IN PRESS                   Back to the articles list | Back to browse issues page


XML Print


Abstract:   (700 Views)
This study systematically investigates the crystallization behavior, phase evolution, and dielectric properties of a BaO-Al₂O₃-SiO₂ glass system modified with 10 wt% TiO₂. Thermal characterization revealed that TiO₂ addition notably reduced the glass transition temperature (from 781.6°C to 779.4°C) and softening point (from 838°C to 824.8°C) compared to the TiO₂-free glass, consequently decreasing the calculated nucleation temperature (from 810°C to 800°C). While differential thermal analysis indicated sluggish crystallization kinetics, isothermal heat treatments identified 1000°C as the optimal processing temperature, leading to the development of a multiphase crystalline assemblage that beneficially included the target monoclinic Ba3.75Al7.5Si8.5O32 phase, which was absent in the TiO₂-free glass. X-ray diffraction identified this phase, along with celsian (BaAl₂Si₂O8) polymorphs and barium titanate crystallites, as the dominant crystalline phases. SEM revealed anisotropic crystal growth (1.14-1.52 μm length). Dielectric characterization in the Ku-band (12.4-18 GHz) demonstrated significant property enhancements, with the relative permittivity decreasing from 10.40 to 6.38 and loss tangent improving from 0.3 to 0.2 after crystallization. These improvements, attributed to the specifically tailored crystalline phase assemblage facilitated by TiO₂, make this glass-ceramic system particularly suitable for advanced microwave applications requiring low dielectric loss and high-frequency stability. The effectiveness of TiO₂ as a crystallization modifier for achieving optimized dielectric properties through controlled devitrification and targeted phase formation is underscored.
Full-Text [PDF 744 kb]   (115 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb