Search published articles


Showing 2 results for Nanostructured Alloy

A. Karimbeigi, A. Zakeri, A. Sadighzadeh,
Volume 10, Issue 3 (9-2013)
Abstract

Ni and Cu elemental powder mixtures containing 25, 50, and 75% at Cu were subjected to mechanical alloying in a planetary ball mill under various milling times. Structural evolution was analyzed by means of X-ray diffraction and scanning electron microscopy. Experimental results indicated that nanostructured solid solution alloy powders having homogeneous distribution of Ni and Cu were formed by milling-induced interdiffusion of the elements. Average crystallite size of the as-milled powders was decreased with increasing Ni content and milling duration, and found to be in the order of 15-40 nm after 30 h of milling for all powder compositions. Moreover, lattice parameter and lattice strain of solid solutions were increased with the time of MA, which was more intense for nickel-rich alloys
Seyed Farzad Dehghaniyan, Shahriar Sharafi,
Volume 21, Issue 2 (6-2024)
Abstract

Mechanical alloying was employed to synthesize a nanostructured alloy with the chemical formula of (Fe80Ni20)1-xCrx (x= 0, 4). The microstructural and magnetic properties of the samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and a vibrating sample magnetometer (VSM). Additionally, theoretical calculations were performed using density functional theory (DFT) under the generalized gradient approximation (GGA). Simulations have demonstrated that an appropriate quantity of chromium (Cr) can dissolve within the BCC-Fe (Ni) structure, resulting in a favorable enhancement of the magnetic moment of the lattice. The XRD results indicated that after 96 hours of milling, Fe (Ni) and Fe (Ni, Cr) with a body-centered cubic (BCC) structure were formed. With increasing milling time, the grain size decreased while the microstrain increased. The saturation magnetization (Ms) of Fe80Ni20 composition increased up to 32 hours of milling, but further milling (up to 96 h) resulted in a decrease in the saturation magnetization However, for the (Fe80Ni20)96Cr4 powders, milling up to 64 h caused a reduction in Ms. The coercivity (Hc) trend was different and increased with longer milling times (up to 96 h) for both compositions.
 


Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb