Showing 5 results for Hybrid
H. Nosraty, M. Tehrani-Dehkordi, M. M. Shokrieh, G. Minak,
Volume 12, Issue 1 (3-2015)
Abstract
In this study, the tensile and compressive behaviors of pure and hybrid composite laminates reinforced by
basalt–nylon bi-woven intra-ply fabrics were experimentally investigated. Epoxy resin was used as the matrix material.
The purpose of using this hybrid composite is to obtain superior characteristics by using the good strength property
of basalt fiber with the excellent toughness of nylon fiber. Five different types of woven fabric were used as
reinforcement with different volume percentages of nylon (0%, 25%, 33.3%, 50% and 100%). The effects of
nylon/basalt fiber content on tensile and compressive parameters were studied. In addition, the after failure visual
inspection and scanning electron microscopy (SEM) analysis was used to determine the extent and type of damage on
tested specimens. The results indicate that the tensile and compressive performances of these composites are strongly
affected by the nylon/basalt fiber content. Also, with a proper choice of fiber content, the nylon/basalt hybrid
composites can achieve mechanical properties comparable with the pure ones. The stress–strain curves, after failure
visual inspection and SEM analysis of tested specimens reveal that hybridization can prevent catastrophic and
complete failure. In hybrid composites, the basalt and nylon fibers cannot reach their maximum strength at the same
time and the progressive failure of the various fibers therefore occurred
Dillibabu Surrya Prakash, Narayana Dilip Raja,
Volume 18, Issue 4 (12-2021)
Abstract
Hybrid composites consisting of AA6061 matrix reinforced with TiB2 (2, 4, 6, and 8 wt. %), Al2O3 (2 wt. %) particles were produced by the sintering process. In comparison to the base material AA6061, the composite produced had improved mechanical properties. The sintered composites' mechanical properties, such as tensile strength and hardness, are measured and compared to the wear-tested specimen. Optical micrographs reveal that composites were riddled with defects like blowholes, pinholes, and improper bonding between the particulates before sintering. However, the post-sintered optical micrograph showed that the defects were greatly suppressed. Micrographic images revealed the changes in surface characteristics before and after wear. Until a sliding distance of 260 m, the wear rate of the hybrid composites was kept lower than that of the base material. The coefficient of all the composite materials produced for this study was noted to be less than that of the base material. The results reveal that the hardness of hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates increased by 5.98 % and 1.35 %. Because of the frictional heating during the wear test, the tensile properties lowered by up to 49.6%. It is concluded that the hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates exhibited less wear rate for extended sliding distance, good hardness, moderate tensile strength, and decent elongation percentage compared to its counterparts.
Abdullah Alswata, Shaimaa Ali, Fares Alshorifi,
Volume 19, Issue 3 (9-2022)
Abstract
ABSTRACT
In this paper, novel Nanohybrid CuO-Fe3O4/Zeolite nanocomposites (HCFZ NCs) have been synthesized to improve the adsorption capacity and activity for removing the Arsenic and Lead cations from the contaminated water solutions. The nanohybrid 4, 10, and 20 -HCFZ NC samples were investigated by XRD, FT-IR, TEM, FESEM, EDX, and BET. The characterization results of these catalysts confirmed the presence of CuO and Fe3O4 NPs in nanospherical shapes as Nanohybrid Cu and Fe oxides on the zeolite surface. Notably, the 10-HCFZ NC sample showed the highest removal efficiency of harmful metallic pollutants from the water in comparison to the prepared neat zeolite, 4-HCFZ NC, and 20-HCFZ NC samples, with a percentage removal of (97.9 %) for Pb ions and (93.5 %) for As ions within 30 minutes (100 ppm). According to the adsorption isotherms results, R2 values for the Langmuir isotherm were the highest, suggesting that the experimental results fit better the Langmuir isotherm model. Generally, according to the obtained results, there is a possibility of enhancing the efficiency of Nanohybrid CuO-Fe3O4/Zeolite NCs to remove Arsenic and Lead ions from polluted aqueous solutions.
Girsha Cahya Maharani, Anne Zulfia Syahrial,
Volume 20, Issue 1 (3-2023)
Abstract
Materials that are applied to combat vehicles require an innovation as the development of the military world advances. The material innovation in this research is a lightweight hybrid laminated Al7075 composites. The main materials used in this research are aluminum 7075 plate, kevlar 29, silicon carbide (SiC) nano powder, and epoxy resin. SiC nano powder is mixed with polyethylene glycol-400 (PEG-400), then ethanol is added so that it becomes a shear thickening fluid (STF) solution which is used to impregnate kevlar. Laminate composites were prepared using the hand lay-up method with epoxy resin as an additive between layers of kevlar and aluminum 7075 plates. The thickness of laminates is various due to the number of kevlar used different of each laminated that is 8, 16, and 24 layers. The results of this study show that the composite with impregnated kevlar has higher ballistic and impact resistance values than the composite with non-impregnated kevlar, which has good potential as a base material for combat vehicles such as tanks. This is also supported by the Fourier Transfer Infrared Spectrometry (FTIR) results to determine the level of absorbance of the functional groups identified in impregnated kevlar and Scanning Electron Microscopy (SEM) results of the distribution of nano SiC filler that infiltrated to the empty space in the kevlar fiber.
Ferda Mindivan,
Volume 21, Issue 4 (12-2024)
Abstract
Natural-reinforced hybrid composites, called "eco-materials," are becoming increasingly important for protecting the environment and eliminating waste problems. In this study, hybrid biocomposites were produced by the colloidal mixing method using seashell (SS) as natural waste, two graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)) as filler material, and polyvinyl chloride (PVC) as the polymer matrix. The crystallization and mechanical properties of hybrid biocomposites were examined based on their thermal properties using TGA and DSC analysis. In comparison to PVC/GO and PVC/RGO composites with identical weight percentages of GO and RGO, the PVC/GO composite exhibited superior thermal stability and crystallinity, resulting in elevated hardness values for the same composite. These results were attributed to the better interaction of GO with PVC due to the higher number of oxygen-containing functional groups in GO than in RGO. However, the PVC/RGO/SS hybrid biocomposites exhibited superior properties than PVC/GO/SS hybrid biocomposites. The greatest crystallinity values were 39.40% for PVC/RGO/SS-20 compared to PVC/RGO at 20 wt% SS content and 29.21% for PVC/GO/SS-20 compared to PVC/GO. The PVC/RGO/SS-20 hybrid biocomposite showed the greatest gain in hardness value, up 18.47% compared to the PVC/RGO composite. No significant change was observed in the melting and weight loss temperatures as the SS content increased; however, the crystallinity and glass transition temperatures in hybrid biocomposites increased as the SS content increased. All analysis results demonstrated the achievement of SS-graphene-PVC interactions, suggesting that SS waste could enhance the thermal and mechanical properties of composite production.