Showing 179 results for Cr
M. Alvand, M. Naseri, E. Borhani, H. Abdollah-Pour,
Volume 15, Issue 1 (3-2018)
Abstract
Friction stir welding (FSW) is a promising technique to join aluminum alloys without having problems encountered during fusion welding processes. In the present work, the evolution of microstructure and texture in friction stir welded thin AA2024 aluminum alloy are examined by electron backscattered diffraction (EBSD) technique. The sheets with 0.8 mm thickness were successfully welded by friction stir welding at the tool rotational speeds of 500, 750, and 1000 rpm with a constant traverse speed of 160 mm/min. EBSD revealed that stir zones exhibited equiaxed recrystallized grains and the grain size increased with increasing the tool rotation rate. The fraction of high angle grain boundaries and mean misorientation angle of the boundaries in the FSW joints at 500 rpm were 63.6% and 24.96°, respectively, which were higher than those of the sample welded at 1000 rpm (53.6% and 17.37°). Crystallographic texture results indicated that the Cube {001}<100> and S {123}<634> textures in base metal gradually transformed in to Copper {112}<111> shear texture. It was found that with increasing the tool rotation rate, the intensity of Cube {001}<100>, Y {111}<112>, S {123}<634>, and Dillamore {4 4 11}<11 11 8> texture orientations increased and the intensity of Brass {011}<211> texture orientation decreased.
M. Krishna, R. Nandini, A.v. Suresh, K. Narasimha Rao ,
Volume 15, Issue 2 (6-2018)
Abstract
An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichiometric in nature. The obtained nano particles showed phase transition from orthorhombic to tetragonal crystal structure without any secondary phases. The high relative density and tetragonality ratio of KNN ceramics obtained through optimized sintering parameters yielded with significant piezoelectric and ferroelectric properties.
R. Ubaid, S. Saroj Kumar, S. Hemalatha,
Volume 15, Issue 3 (9-2018)
Abstract
Drug resistant pathogenic microbes have been causing serious health issues resulting in the substantial increase of death rates and morbidity paving the way for nanoparticles to be utilized as antimicrobial agents. This study was performed to evaluate the effectiveness of CuNPs on the growth of drug resistant clinical isolates of Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis. Minimum inhibitory concentration of CuNPs against Streptococcus pyogenes, Enterococcus faecium and Enterococcus faecalis was found to be 1.25. 1.25 and 0.625 mg/ml and minimum bactericidal concentration against the same isolates was found to be 2.5, 2.5 and 5 mg/ml respectively. The ratio of MBC/MIC, referred to as tolerance level, was calculated for all the isolates which signifies the bactericidal or bacteriostatic effect of any antimicrobial agent. For Streptococcus pyogenes and Enterococcus faecium, the tolerance level was 2 while as for Enterococcus faecalis, it was 8. Antibiotic susceptibility results were calculated which showed that the isolates were resistant to Ampicillin (10 µg), Amoxycillin (30 µg) and Aztreonam (30 µg). Susceptibility results were followed by calculating multiple antibiotic resistance indices (MARI). MARI is an important tool which gives an idea about the bacterial resistance in a given population. For all the three isolates, MARI results were equivalent to 1 because of their resistance towards all the three antibiotics used. Antimicrobial activity through well-plate method was carried out and inhibitory effect of CuNPs on biofilm formation was evaluated.
S. Gholami Shiri, Y. Palizdar, . A. Jenabali Jahromi, Eduardo F. de Monlevade,
Volume 15, Issue 3 (9-2018)
Abstract
The relation between microstructure and the fracture mechanisms of δ-TRIP steel with different Nb-content has been investigated using complementary methods of light microscopy, SEM, EDS, EBSD, X-ray phase analysis and tensile test. The results revealed a close dependency between the presences of constitutive phases i.e. ferrite, bainite, retained austenite and martensite and the mode and characteristics of fracture. All samples revealed almost different fractography pattern which could be associated to the effect of Nb microalloying element. The different fractography patterns were consisted of dimple rupture, riverside and Wallner lines pattern. The proportion of the cleavage fracture in comparison of dimple rapture increased by increasing the Nb-content due to the increase of primary martensite in the microstructure.
A. Ait Yala, N. Demouche, S. Beddek, K. Hamid,
Volume 15, Issue 4 (12-2018)
Abstract
Repairing a crack in a structure consists in reducing crack’s tips stresses by transferring loads trough a bridge made of the composite patch and the adhesive. This operation is impacted by four factors: shear modulus of the adhesive, the composite patch’s Young module and the thicknesses of these two materials. The design of experiments method allowed us to determine, the weight of each of the four factors and their interactions as well their best combination to obtain an efficient and lasting repair. The constraints relative to the stiffness ratio and the shear strain were taken into consideration in order to determine the best configuration that allowed the minimization of K.
S. Kord, M. H. Siadati, M. Alipour, H. Amiri, P.g. Koppad, A. C. Gowda,
Volume 15, Issue 4 (12-2018)
Abstract
The effects of rare earth element, erbium (Er) additions on the microstructure and mechanical properties of Al-15Zn-2.5Mg-2.5Cu alloy have been investigated. This new high strength alloy with erbium additions (0.5, 1.0, 1.5 and 2.0 wt%) was synthesized by liquid metallurgy route followed by hot extrusion. Microstructural characterization was performed using scanning electron microscope and electron probe microanalysis. Significant amount of grain refinement was observed with erbium addition in the hot extruded and heat treated alloy. Tensile test was performed to investigate the effect rare earth on mechanical behavior of alloy in as cast and hot extruded condition before and after T6 heat treatment. The combined effect of erbium addition, hot extrusion and heat treatment significantly enhanced the tensile strength of alloy (602 MPa) when compared to the as cast alloy without erbium addition (225 MPa). The strengthening of the alloy was attributed to grain refinement caused by erbium along with hot extrusion and formation of precipitates after T6 heat treatment. Fractograhic investigations revealed that the hot extruded alloy with erbium addition after heat treatment showed uniformly distributed deep dimples exhibiting ductile behavior.
T. Ebadzadeh, S. Ghaffari, M. Alizadeh, K. Asadian, Y. Ganjkhanlou,
Volume 16, Issue 1 (3-2019)
Abstract
The densification behavior, structural and microstructural evolution and microwave dielectric properties of Li2TiO3 + xZnO (x = 0, 0.5, 1, 1.5, 2, 3, and 5 mol%) ceramics have been investigated using X-ray diffraction, Field Emission Scanning Electron Microscopy, Raman spectroscopy and microwave resonant measurement. The Maximum density of 3.33 g/cm3 was obtained in Li2TiO3 + 2ZnO ceramic at low sintering temperature of 1100˚C. SEM investigations revealed good close packing of grains when x = 2 and preferential grain growth when x ≥ 3. The maximum values of Q × f = 31800 GHz and εr = 22.5 were obtained in Li2TiO3 + 3ZnO and Li2TiO3 + 2ZnO compositions, respectively. The observed properties are attributed to the microstructural evolution and grain growth (first case) or high density of the obtained ceramic (second case).
M. Tavakoli Harandi, M. Askari-Paykani, H. Shahverdi, M. Nili Ahmadabadi,
Volume 16, Issue 1 (3-2019)
Abstract
One-step and two-step annealing techniques were used to examine the relationship between microstructure and mechanical properties during compression tests in iron-based ribbons and nanostructured 1- and 2.5mm cylindrical rods. The X-ray diffraction, microstructural, and mechanical results showed that substituting Nb for Fe had a minor effect on glass-forming ability but increased the formability index. The novel two-step annealing process resulted in a remarkable formability index of 16.62 GPa, yield stress of 2830 MPa, ultimate strength of 3866 MPa, and 4.3% plastic strain. A ductile nanosized α-Fe framework and boron-containing nano precipitations, which caused Zener pinning effect, were responsible for these novel mechanical properties.
M. Adineh, H. Doostmohammadi, R. Raiszadeh,
Volume 16, Issue 2 (6-2019)
Abstract
Relations between the microstructure, mechanical properties and machinability of as-cast 65Cu-35Zn brass with various amounts of Al from 0 to 4.72 and Si from 0 to 3.62 wt% were investigated. Both Si and Al initially enhanced the UTS and toughness of the brass samples, which led to improvement in machinability due to a reduction in the main cutting force. A duplex brass with random oriented α plates in β’ matrix was found to have the best machinability among the other microstructures. It was found that beside the presence of brittle phases, such as β’ phase in the microstructure, the morphology and hardness of the phases involved had significant influence on machinability.
I. Hajiannia, M. Shamanian, M. Atapour, R. Ashiri, E. Ghassemali,
Volume 16, Issue 2 (6-2019)
Abstract
In this study, the effects of the second pulse resistance spot welding on the microstructure and mechanical properties of TRIP1100 steel were evaluated. The thermal process after welding was designed to improve metallurgical properties with pulse currents of 6kA, 9kA and 12kA after initial welding with 10kA current. The effect of the second pulse on mechanical and microstructural properties was investigated. The fracture of the welds was for pulsed samples of 6kA and 9kA PO with CTS test. Due to existence of the microstructure including the equaxial dendritic and finer in FZ in the pulsed current 9kA, the maximum fracture energy and maximum force were observed. A significant decrease in the FZ hardness in 6kA current was observed in the nanohardness results, which was attributed to existence martensitic and ferrite temper. The highest ratio of CTS / TSS was obtained for 6kA and 9kA, respectively, and force displacement rate was maximum in 9kA. The fracture surfaces included dendrites and dimples. The results of partial fracture revealed separation in the coherent boundaries of the coarse grain of the annealed region.
S. Mirzaei, H. Saghafian, A. Beitollahi, J. Świerczek, P. Tiberto,
Volume 16, Issue 3 (9-2019)
Abstract
In the present research, rapidly solidified Fe85.3B11P3Cu0.7 ribbons were prepared by melt spinning process. The microstructural variation as well as magnetic properties of the as-spun and annealed ribbons were characterized by X-ray diffraction (XRD), transmission Mossbauer spectroscopy and alternating gradient field magnetometer (AGFM). The results show two separated distinct exothermic peaks during heating resulting from the phase transition from amorphous to α-Fe and then to Fe3B, respectively. The study of magnetic properties in the amorphous and nanocrystalline states revealed that annealing the amorphous ribbons at 440˚C for 10 minutes gives rise to a significant increase in saturation magnetization (220 emu/g) which makes this alloy a good candidate for power applications.
A. Khakzadshahandashti, N. Varahram, P. Davami, M. Pirmohammadi,
Volume 16, Issue 3 (9-2019)
Abstract
The combined influence of both melt filtration and cooling rate on the microstructure features and mechanical properties of A356 cast alloy was studied. A step casting model with five different thicknesses was used to obtain different cooling rates. The effect of melt filtration was studied by using of 10 and 20 ppi ceramic foam filters in the runner. Results showed that secondary dendrite arm spacing decreased from 80 μm to 34 μm with increasing cooling rate. Use of ceramic foam filters in the runner led to the reduction of melt velocity and surface turbulence, which prevented incorporation of oxide films and air in the melt, and consequently had an overall beneficial effect on the quality of the castings. A matrix index, which is the representative of both SDAS and microporosity content, was defined to consider the simultaneous effect of melt filtration and cooling rates on UTS variations. Also, the fracture surface study of test bars cast using 10 and 20 ppi ceramic foam filters showed features associated with ductile fracture.
M. Demouche, E. H. Ouakdi, R. Louahdi,
Volume 16, Issue 3 (9-2019)
Abstract
In this study, high-carbon, chromium alloy steel (100Cr6) having the initial spheroidized microstructure was welded using the rotary friction welding method. The effects of process parameters such as friction time and friction force were experimentally investigated. The friction welded joints were produced of two 100Cr6 steel rods. In order to examine the microstructure and mechanical properties of the friction welded 100cr6 steel joints, tensile and hardness tests were conducted. The microstructure of weld zone was examined by optical microscopy. It was found that after cooling, martensitic structure is obtained at the core and periphery of the weld joint. It was found that the tensile strength of friction welded samples is increased with increasing time and force of friction up to a certain level and then decreases again. Hardness measurements show a higher hardness at the centre of the weld joint in comparison with its periphery.
M. Hoghooghi, O. Jafari, S. Amani, G. Faraji, K. Abrinia,
Volume 16, Issue 4 (12-2019)
Abstract
Spread extrusion is a capable method to produce different samples with a wider cross-section from the smaller billets in a single processing pass. In this study, dish-shaped samples are successfully produced from the as-cast cylindrical AM60 magnesium alloy at 300 °C, the mechanical properties and microstructural changes of the final specimens are precisely evaluated. Due to the high amount of plastic strain, which is applied to the initial billet during the material flow in the expansion process, grain refinement occurred as a result of recrystallization and subsequently good mechanical properties achieved. Therefore, mean grain size reduced from 160 µm to 14 µm and initial equiaxed grains changed to the elongated ones surrounded by fine grains. Also, microhardness measurements indicate that hardness increased from 51 Hv to 70 Hv. Some fluctuations were also observed in the hardness profile of the sample which was mainly related to the bimodal structure of the final microstructure. Good mechanical properties, fine microstructure, and also the ability to produce samples with higher cross-section make the spread extrusion process a promising type of extrusion.
A. R. Abbasian, M. R. Rahimipour, Z. Hamnabard,
Volume 16, Issue 4 (12-2019)
Abstract
In this work, lithium meta titanate (Li2TiO3) nanocrystallites were synthesized by hydrothermal method and subsequent heat treatment. The shrinkage of the powder compact was measured under constant heating rate in order to study the sintering behavior of the synthesized powders. Densification curves of the synthesized powders were also constructed via the dilatometry analysis and evaluated at several heating rates. Two separate methods of analytical procedure and master curve sintering were employed to determine the activation energy of the initial sintering stage. The activation energy values were estimated based on these two distinct methods as 229±14 and 230 kJ/mol respectively, consistenting with each other. Moreover, surface diffusion was determined as the dominant mechanism of densification on initial sintering of Li2TiO3 nanocrystallites.
V. Tajer Kajinebaf, M. Zarrin Khame-Forosh, H. Sarpoolaky,
Volume 17, Issue 1 (3-2020)
Abstract
In this research, the nanostructured titania-coated silica microsphere (NTCSM) membrane consisting of titania-silica core-shell particles on α–alumina substrate was prepared by dip-coating method. The silica microspheres were synthesized by the Stöber method, and the nanostructured titania shell was obtained from a polymeric sol. Then, the prepared core-shell particles were deposited on alumina substrates. The samples were characterized by DLS, TG-DTA, XRD, FTIR and SEM. The photo-catalytic activity of the NTCSM membranes was evaluated using photo-degradation of methyl orange solution by UV–visible spectrophotometer. Also, physical separation capability was investigated by filtration experiment based on methyl orange removal from aqueous solution using a membrane setup. The mean particle size distribution of silica microspheres was determined to be about 650 nm that by deposition of titania nano-particles increased up to about 800 nm. After 60 min UV-irradiation, the dye removal efficiency was determined to be 80% by the membrane. By coupling separation process with photo-catalytic technique, the removal efficiency was improved up to 97%. Thus, the NTCSM membranes showed simultaneous photo-degradation and separation capabilities for dye removal from water.
H. Jafarian, H. Miyamoto,
Volume 17, Issue 1 (3-2020)
Abstract
In the present work, accumulative roll bonding (ARB) was used as an effective method for processed of nano/ultrafine grained AA6063 alloy. Microstructural characteristics indicate considerable
grain refinement leading to an average grain size of less than 200 nm after 7 ARB cycles. Texture analysis showed that 1-cycle ARB formed a strong texture near Copper component ({112}<111>). However, texture transition appeared by increasing the number of ARB cycles and after 7-cycle of ARB, the texture was mainly developed close to Rotated Cube component ({100}<110>). The results originated from mechanical properties indicated a substantial increment in strength and microhardness besides a meaningful drop of ductility after 7 ARB cycles.
M. Azadi, M. Ferdosi, H. Shahin,
Volume 17, Issue 1 (3-2020)
Abstract
In this paper, the effects of solutioning and various aging heat treatment processes on the microstructure, the hardness and electrochemical properties of a duplex stainless steel (DSS) were studied. The evaluation of the microstructure and phase compositions were carried out by the optical microscopy (OM) and the X-ray diffraction (XRD), respectively. Electrochemical behaviors of specimens were evaluated by both potentiodynamic polarization and electrochemical impedance spectra (EIS) tests at temperatures of 25 and 60 ºC. The obtained results showed that the solutioning heat treatment increased corrosion rates with respect to the blank specimen. The aging process at 490 ºC for 20 hrs increased the volume percent of the carbide phase to the highest value (25.1%) which resulted in an increase of the hardness value to 170 VHN. The specimen which was aged at 540 ºC for 10 hrs with the Cr7C3 size of 22.8 µm, exhibited the higher corrosion resistance at both temperatures of 25 and 60 ºC with respect to other aged specimens. In addition, the temperature of 60 ºC promoted the anodic reactions in 3.5 wt% NaCl solution which decreased impedance modulus values significantly. Consequently, the carbide size was more effective parameter than the carbide content in predicting electrochemical behaviors of such alloys.
M. Sadeghi, M. Hadi, O. Bayat, H. Karimi,
Volume 17, Issue 1 (3-2020)
Abstract
In this paper a constitutive equation was considered for the isothermal hot compression test of the Mn-Ni-Cr alloy. The hot compression test was performed in the strain rate range of 0.001-0.1 s-1 and deformation temperature was varied from 700 to 900 °C. A considerable reduction in flow stress was observed regardless of the strain rate when temperature was increased from 700 to 750 °C. DTA and XRD evaluation revealed that the removal of Mn3Cr phase and formation of the single solid solution phase were the reason for the flow stress reduction. At the low deformation temperature (700°C) and the high strain rate (0.1 s-1), a partially recrystallized microstructure was observed; this was such that with increasing the temperature and decreasing the strain rate, a recrystallized microstructure was completed. Also, the relationships between flow stress, strain rate and deformation temperature were addressed by the Zener-Holloman parameter in the exponent type with the hot deformation activation energy of 301.07 KJ/mol. Finally, the constitutive equation was proposed for predicting the flow stress at various strain rates and temperatures.
R. Kumar, Y. Chandra Sharma, V. Vidya Sagar, D. Bhardwaj,
Volume 17, Issue 2 (6-2020)
Abstract
In this study an effort has been made for the plasma ion nitriding (PIN) of Inconel 600 and 601 alloys at low temperatures. After plasma ion nitriding, microstructure study, growth kinetics of nitrided layer formation and wear properties were investigated by various characterization techniques such as; scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, micro-hardness measurement and wear test by pin on disk technique. It was found that, surface micro-hardness increases after PIN process. A mix peak of epsilon (ε) phase with fcc (γ) phase was detected for all temperature range (350 0C to 450 0C), while the chromium nitride (CrN) phase was detected at elevated temperature range ~450 0C in inconel 601 alloy. The calculated values of diffusion coefficient and activation energy for diffusion of nitrogen are in accordance with the literature. Volume loss and wear rate of the plasma nitrided samples decreases, but it increases as PIN process temperature increases.