Search published articles


Showing 45 results for Corrosion

Amirhossein Kazemi, Arash Fattah-Alhosseini, Maryam Molaei, Meisam Nouri,
Volume 19, Issue 2 (6-2022)
Abstract

In this study, for the first time, the Forsterite (Mg2SiO4) nanoparticles (NPs) with the size of about 25 nm were added to the phosphate-based electrolyte, and the characteristics and properties of the obtained plasma electrolytic oxidation (PEO) coating on AZ31 Mg alloy was investigated. The results of the potentiodynamic polarization measurements revealed that after one week of exposure to simulated body fluid (SBF) solution, the coating with Mg2SiO4 NPs possessed 12.30 kΩ cm2 polarization resistance, which was more than two times greater than that of the coating without NPs. The thicker coating layer, lower wettability, and also presence of Mg2SiO4 NPs inside the pores were responsible for enhanced corrosion protection in the Mg2SiO4 NPs incorporated coating. After three weeks of immersion in SBF solution, the in-vitro bioactivity test results indicated the ability of the NPs-containing coating to form apatite (Ca/P ratio of 0.92) was weaker than the coating without NPs (Ca/P ratio of 1.17). This could be attributed to the lower wettability of the coating with NPs and supports that the addition of the nanoparticles is not beneficial to the bioactivity performance of the coating. 
Erfan Lotfi-Khojasteh, Hassan Elmkhah, Meisam Nouri, Omid Imantalab, Arash Fattah-Alhosseini,
Volume 19, Issue 4 (12-2022)
Abstract

This paper aims to study the tribological and electrochemical properties of the CrN/AlCrN nano-layer deposited on H13 tool steel. Arc physical technique was employed to deposit multilayer coating. X-ray diffraction technique, thermionic and field emission scanning electron microscopy and energy dispersive spectroscopy have been used to determine the characteristics of the samples. To study the samples' wear behavior, coating adhesion, and surface hardness, reciprocating wear test, Rockwell-C test, and microhardness Vickers tester were employed, respectively. The measured values of the coefficient of friction and the calculated wear rates showed that the CrN/AlCrN multilayer coating has a much higher wear resistance than the uncoated sample. The coefficient of the friction of the coated sample was 0.53 and that of the uncoated sample was 0.78. Moreover, the wear rate of the coated H13 steel was about 127 times lower than the bare H13 steel sample. The results obtained from electrochemical impedance spectroscopy and polarization tests demonstrated that the corrosion current density of the H13 steel sample was 8 μA/cm2 and that of the CrN/AlCrN multilayer-coated sample was 3 μA/cm2. In addition, the polarization resistance of the treated and the substrate specimens was estimated at 4.2 and 2.7 kΩ.cm2, respectively.
Sravanthi Gudikandula, Ambuj Sharma,
Volume 19, Issue 4 (12-2022)
Abstract

The lean duplex stainless steels (LDSS) have excellent features due to the microstructural phase
combination of austenite and ferrite grains. These steels have low Ni and Mo contents which can reduce the cost
and stabilize the austenite fraction in the microstructure. In recent years, welding is used to enhance the
microstructural behaviour of LDSS. In this paper, Gas tungsten arc welding (GTAW) was performed on LDSS
S32101 with different heat energy inputs and varying welding currents. The influence of heat inputs (0.85 and 1.3
kJ/mm) on welded samples was investigated to study the microstructural behaviour, phase balance, and mechanical
& corrosion performance. The microstructures studies were carried out using an optical microscope, scanning
electron microscope and X-ray diffraction. The effect of Heat input led to the significant microstructural evolution
in weld metals with high austenite reformation. The microstructure of weldments consisted of inter-granular
austenite (IGA), grain boundary austenite (GBA) and Widmanstatten austenite (WA). Important mechanical
properties such as tensile strength and micro-hardness were investigated to understand the performance of
weldments. The polarization method was used to understand the corrosion behaviour of weldment in a 3.5% NaCl
solution. The experimental results showed enhanced properties of welds that could be suitable for industrial
applications.
Sandeep Ramasamy Periasamy, Vaira Vignesh Ramalingam, Ajay Vijayakumar, Harieharran Senthilkumaran, Vyomateja Sajja, Padmanaban Ramasamy, Samuel Ratna Kumar Kumar Paul Sureshkumar ,
Volume 20, Issue 2 (6-2023)
Abstract

Novelty: Most of the open literature research has focused on the microstructural evolution and mechanical properties of AA2050 alloy. Also, a significant study discusses the corrosion behavior of AA2050 alloy based on immersion and electrochemical characteristics. The influence of heat treatment on the microstructure and mechanical properties of friction stir processed AA2050 alloy is scarcely discussed in the open literature. The hot salt corrosion characteristics of friction stir processed AA2050 seldom exists in the available literature. This study concentrates on microhardness, tensile strength, and corrosion properties of friction stir processed AA2050. Also, the work focuses on the influence of artificial aging on the microhardness, and tensile strength of the friction stir processed AA2050.

 
Mehdi Mehranian, Hajar Ahmadimoghadam,
Volume 21, Issue 4 (12-2024)
Abstract

In this research study, a composite coating of Ni-Co/SiC-CeO2 was prepared on a copper substrate using the pulse electrodeposition technique. The effects of electrodeposition parameters, including current density, duty cycle, and frequency, on the properties of the prepared coating were investigated. The selected current density values were 0.1, 0.2, and 0.3 A/cm2, the duty cycle options were 10, 20, and 30%, and the frequency values were 10, 100, and 1000 Hz. Increasing the current density enhanced the microhardness of the coating but reduced its corrosion resistance. This behavior can be attributed to the grain refinement occurring within the coating as the current density increases. On the other hand, an increase in duty cycle resulted in a decrease in microhardness, which can be attributed to a decrease in the concentration of nanoparticles within the coating. The lower corrosion resistance observed at higher duty cycles could be attributed to the decrease in off-time, causing the pulse electrodeposition conditions to approach a DC (direct current) state. Furthermore, higher frequencies were found to be associated with increased microhardness and improved corrosion resistance of the coatings. The coatings with the highest corrosion resistance exhibited a corrosion current density of 0.29 µA/cm2 and a polarization resistance of 1063 Ω.cm2 in a 3.5% NaCl solution. These coatings were prepared using a current density of 0.2 A/cm2, a duty cycle of 10%, and a frequency of 1000 Hz.

 

Page 3 from 3     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb