Search published articles



Sravanthi Gudikandula, Ambuj Sharma,
Volume 19, Issue 4 (12-2022)
Abstract

The lean duplex stainless steels (LDSS) have excellent features due to the microstructural phase
combination of austenite and ferrite grains. These steels have low Ni and Mo contents which can reduce the cost
and stabilize the austenite fraction in the microstructure. In recent years, welding is used to enhance the
microstructural behaviour of LDSS. In this paper, Gas tungsten arc welding (GTAW) was performed on LDSS
S32101 with different heat energy inputs and varying welding currents. The influence of heat inputs (0.85 and 1.3
kJ/mm) on welded samples was investigated to study the microstructural behaviour, phase balance, and mechanical
& corrosion performance. The microstructures studies were carried out using an optical microscope, scanning
electron microscope and X-ray diffraction. The effect of Heat input led to the significant microstructural evolution
in weld metals with high austenite reformation. The microstructure of weldments consisted of inter-granular
austenite (IGA), grain boundary austenite (GBA) and Widmanstatten austenite (WA). Important mechanical
properties such as tensile strength and micro-hardness were investigated to understand the performance of
weldments. The polarization method was used to understand the corrosion behaviour of weldment in a 3.5% NaCl
solution. The experimental results showed enhanced properties of welds that could be suitable for industrial
applications.
Yaser Moazzami, Mahdi Gharabaghi, Ziadin Shafaei Tonkaboni,
Volume 19, Issue 4 (12-2022)
Abstract

Ionic liquids as green solvents with high thermal stability, recyclability, low flash point, and low vapor
pressure, have been considered as a viable alternative in hydrometallurgical processes. In this study the leaching
kinetics of chalcopyrite concentrate was investigated using 1-Butyl-3-methylimidazolium hydrogen sulfate
(BmimHSO4) as an acidic ionic liquid. The Effect of operational parameters, including temperature, BmimHSO4
concentration, H2O2 concentration, stirring speed, solid-to-liquid ratio, and particle size on the rate of copper
dissolution of CuFeS2 were examined systematically. The highest Cu efficiency (ca. 97%) was achieved using 40%
(w/v) BmimHSO4, 30 %v/v H2O2, and 10 g.L-1 solid to liquid ratio for particle sizes less than 37 μm at 300 rpm and
45°C after 180 min leaching time. Kinetics study using Shrinking Core Model (SCM) revealed that CuFeS2 leaching
process using BmimHSO4 follows chemical reaction-controlled process. Under these circumstances, the calculated
activation energy was 46.66 KJ/mol. Moreover, the orders of reaction with respect to BmimHSO4 and H2O2
concentration, solid to liquid ratio and particle size were estimated to be 0.539, 0.933, −0.676 and −1.101
respectively. The obtained Arrhenius constant was found to be 0.26  106. The calculation of apparent activation
energy using “time given to a fraction method” revealed that the leaching mechanism remains the same over the
course of time.
Razieh Khoshhal, Seyed Vahid Alavi Nezhad Khalil Abad,
Volume 20, Issue 1 (3-2023)
Abstract

  1. In this article, the effect of graphite on iron-silicon interactions was investigated. It was found that, as graphite enters the iron structure, it permits further development of iron-silicon reactions. It was found that in the stoichiometric ratio of 1:0.5 of iron and silicon, when graphite is added to the system, simultaneously with the reaction of iron and silicon to form Fe3Si5, some amount of carbon can be dissolved in the iron and lead to more diffusion in iron and more iron silicide production. Silicon also reacts with carbon and produces SiC. The more amount of carbon entered into the system, the more growth of SiC occurs, while the production of other iron silicide phases, namely FeSi and Fe3Si preceded. Finally diffused carbon into the iron reaches a definite amount that can form Fe3C. In the stoichiometric ratio of 1:1 of iron and silicon, the formation of FeSi and SiC phases is observable. At the same time, the diffusion of carbon occurs in the same as the previous stoichiometric ratio. In the stoichiometric ratio of 1:2 of iron and silicon, compared with the stoichiometric ratio of 1:1, a larger amount of silicon is available and, the FeSi2 phase can form in addition to FeSi






Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb