Mohsen Motahari-Nezhad,
Volume 13, Issue 1 (3-2023)
Abstract
In this study, feedback neural networks namely Elman and Jordan are used for prediction of exhaust valve temperature for air cooled engines. Input-output data are extracted from an experimental setup including the valve mechanism of an air cooled engine. Inverse heat transfer problem applying the Adjoint problem is used to address the thermal flux through exhaust valve and seat. Elman and Jordan neural networks are used to predict the transient valve temperature using the experimental data. The results show that Elman and Jordan neural networks predicts well the transient exhaust valve temperature. However, Jordan neural network with training algorithm of Gradient Descent with Adaptive Learning Rate performs better with RMSE error of 16.3 for prediction of exhaust valve temperature.
Ms Ali Ghiasi Noghabi, Dr Mansour Baghaeian, Dr Hamid Reza Goshayeshi,
Volume 13, Issue 3 (9-2023)
Abstract
In this research, the effect of using three Nano fluids contains graphene oxide (GO), titanium oxide (TiO2) and aluminum oxide (Al2 O3) was analyzed on the heat transfer of the car radiator by experiment in physical conditions on the car engine. Distilled water and ethylene glycol (60:40) as the base fluid was companied with three nanoparticles contain graphene oxide, titanium oxide and aluminum oxide that each one separately with 0.1, 0.2 and 0.3 weight percent and flow rates of 10, 20, 32 and 40 liters per minute were used at normal engine temperature. After the temperature of the radiator cooling fluid reached 90 degrees Celsius and the fan was turned on for one minute, the results showed that increasing the weight percentage of nanoparticles to the base fluid increases the displacement heat transfer coefficient and most increase in the coefficient of heat transfer at 0.3 weight percent to an approximate value of 5.2% in aluminum oxide, 11.9% for titanium oxide and 28.7% for graphene oxide compared to the base fluid was received. With the increase in weight percentage, the pressure drop and Nusselt number increased. The highest percentage increase in the radiator pressure drop for all three Nano fluids with 0.3 weight percentage and 2.2% for aluminum oxide, 3.5% for Titanium oxide and 5.24% for graphene oxide were received. |
Dr Mansour Baghaeian, Mr Khajeh Morad Sharghi,
Volume 13, Issue 4 (12-2023)
Abstract
In this article, the effect of the usage of variable speed electric water pump on the cooling system of a type of passenger car engine has been investigated. The engine water circulation in most of today's cars uses a mechanical method, the power required for its circulation is provided by a belt with a ratio of 1:1 from the crankshaft. This action makes the changes of the water pump speed a function of the engine speed and there is no control over it. One way to solve this problem is to use an intelligent thermal management system. In this method, some components of the cooling system, including the electric water pump, are controlled based on the working conditions and engine temperature. In this research, GT Suite and Simulink software were used simultaneously, and for this purpose, the engine cooling circuit with a mechanical water pump was simulated in GT Suite software and the accuracy of laboratory values was verified in terms of heat transfer. Then the mechanical connection of the water pump was disconnected and the water pump circuit was controlled with an electric motor. In the next step, in order to obtain the control pattern, the electric water pump was replaced with the mechanical water pump in the simulation pattern. The results of the software and experimental simulations of the intelligent cooling system showed a 13.4% reduction in engine warm-up time. |
Mr Mehran Nazemian, Mr Mehrdad Nazemian, Mr Mahdi Hosseini Bohloli, Mr Hadi Hosseini Bohloli, Mr Mohammad Reza Hosseinitazek,
Volume 14, Issue 3 (9-2024)
Abstract
This study investigates the influence of nozzle hole diameter (NHD) variations on spray dynamics, combustion efficiency, and emissions in a Reactivity-Controlled Compression Ignition (RCCI) engine using Computational Fluid Dynamics (CFD) simulations with the CONVERGE software. The study systematically examines NHDs ranging from 130 µm to 175 µm and evaluates their impact on key parameters such as injection pressure, droplet formation, Sauter Mean Diameter (SMD), and evaporation rates. The results demonstrate that reducing NHD to 130 µm significantly enhances fuel atomization by reducing SMD to 15.49 µm and increasing droplet number by 24%, which in turn accelerates evaporation and improves fuel-air mixing. These effects shorten ignition delays, accelerate combustion, and increase peak cylinder pressures and temperatures. Optimal NHDs (150–160 µm) achieve the highest combustion efficiency (92.04%) and gross indicated efficiency (38.58%). However, further reduction in NHD below this range causes premature ignition, energy dissipation, and higher NOx emissions (10.08 g/kWh) due to elevated combustion temperatures. Conversely, when the NHD increases to 175 µm, the larger droplets formed result in prolonged ignition delays, slower combustion, and lower peak pressures. These effects negatively impact combustion efficiency and promote incomplete combustion, leading to higher HC (15.27 gr/kWh) and CO (4.22 gr/kWh) emissions. Larger NHDs, however, lower NOx emissions to 2.66 gr/kWh due to reduced peak temperatures. This study clearly identifies an optimal NHD range (150–160 µm) that effectively balances droplet size, evaporation rate, combustion timing, and emission reduction, thereby enhancing both engine performance and environmental sustainability.
Alireza Batooei, Ahad Amiri, Ali Qasemian,
Volume 14, Issue 4 (12-2024)
Abstract
One of the most important aspects of designing passenger cars is the engine cooling. This process would significantly affect the vehicle performance. This study has been conducted both theoretically and experimentally to reveal the influences of different involved parameters of cooling. The current research is implemented in order to examine the effects of 2-speed radiator fan utilization rather than the 1-speed type. For this aim, the new modified fan is considered and the experimental data are obtained to compare the results with those of the old one. Additionally, the effects of parameters such as ECU strategy, radiator fin density as well as the radiator plate geometrical properties are considered in the analysis. As a prominent result, the experimental results show a substantial effect of considering 2-speed radiator fan and choosing a better strategy for ECU on the cooling performance in the vehicle. The experimental results show that employing 2-speed fan instead of single-speed and 900 fin/m fin density instead of 780 fin/m decreases coolant outlet temperature of radiator by 6.1% and 7.1% in the same condition, respectively.
Alireza Goharian, Alireza Asadolahei,
Volume 15, Issue 1 (3-2025)
Abstract
This study investigates the effects of ozone gas injection on reducing exhaust emissions in internal combustion engines (ICEs). Ozone (O₃), a highly reactive oxidizing agent, has been widely utilized for air and water purification. Its ability to break down pollutants makes it a promising alternative or supplement to conventional catalytic converters, which require expensive materials and periodic recycling. In this research, ozone gas was generated using the corona discharge method and injected into the combustion system to evaluate its impact on carbon monoxide (CO) emissions. A low-power 12-volt compressor, capable of producing up to 10 bar pressure, was used to ensure proper injection. A five-gas analyzer was employed to measure emission changes before and after ozone injection. Results indicated an average CO reduction of 34–40% across seven tested vehicles, with the highest effectiveness observed at steady-state engine operation and moderate loads. Furthermore, an increase in lambda (λ) values suggested improved air-fuel combustion efficiency. Statistical analysis, including standard deviation (±0.005) and a 95% confidence interval, confirmed the reliability of these findings. The results demonstrate that ozone injection can serve as a cost-effective method to supplement traditional emission control technologies, potentially reducing reliance on catalytic converters.
Ashkan Moosavian, Mojtaba Mehrabivaghar, Mani Ghanbari,
Volume 15, Issue 1 (3-2025)
Abstract
Mr Mehran Nazemian, Mr Mehrdad Nazemian,
Volume 15, Issue 2 (6-2025)
Abstract
This study investigates the performance of Reactivity-Controlled Compression Ignition (RCCI) engines under varying engine speeds using a 4E approach (Evaporation, Energy, Emissions, Exergy) and introduces innovative multidimensional efficiency indices. A 1.9-liter TDI Volkswagen engine was modeled in CONVERGE CFD software to analyze spray dynamics, combustion processes, and emissions across different engine speeds. New indices, including Evaporation-Energy Performance Index (EvEPI), Emission-Energy Synergy Index (EmESI), and Exergy-Emission Balance Index (ExEmBI), were developed to evaluate engine performance comprehensively. Results reveal that optimal performance occurs within 1600–2200 RPM, where fuel evaporation, combustion efficiency, and exergy utilization are maximized while emissions are minimized. For instance, at 3100 RPM, EvEPI increases sharply to 9857.17 mg/ms, reflecting enhanced evaporation but also highlighting risks of non-uniform fuel-air mixing at high speeds. Conversely, EmESI for HC rises from 33.04 gr/kW.h at 1000 RPM to 284.90 gr/kW.h at 3100 RPM, indicating increased unburned hydrocarbons due to incomplete combustion. NOx emissions decrease from 11.51 gr/kW.h at 1600 RPM to 2.28 gr/kW.h at 3100 RPM, aligning with reduced combustion temperatures. Higher speeds lead to elevated HC and CO emissions due to shorter mixing times, while lower speeds increase NOx due to prolonged combustion durations. Exergy analysis shows total and second-law efficiencies peak at lower speeds, emphasizing the importance of optimizing operational parameters. These findings provide valuable insights for designing efficient, low-emission RCCI engines.