B. Mashhadi, M.a. Vesal, H. Amani,
Volume 7, Issue 3 (9-2017)
Abstract
This paper presents a force field concept for guiding a vehicle at a high speed maneuver. This method is
similar to potential field method. In this paper, motion constrains like vehicles velocity, distance to obstacle
and tire conditions and such lane change conditions as zero slop condition and zero lateral acceleration are
discussed. After that, possible equations as vehicles path are investigated. Comparing advantages and
disadvantages of 7th, 11th degree and a few other equations, followed by single mass and bicycle models
lead to an improved method, which is presented in this paper.
H. Chehardoli, M.r. Homainezhad,
Volume 7, Issue 3 (9-2017)
Abstract
This paper studies the longitudinal control of a group of vehicles following a lead vehicle. A
neighbor based upper level controller is proposed by considering communication delay and
actuator lag. Constant spacing policy is used between successive vehicles. Two different
approaches based on Lyapunov-Razumikhin and Lyapuniv-Krassovski theorems are presented to
stability analysis of closed loop dynamic. By simulation studies, it will be shown that the second
approach is less conservatism than the first one. We consider the bidirectional leader following
(BDLF) topology for inter-vehicle communication. Based on this structure, some sufficient
conditions assuring string stability of platoon is derived. At the end of paper, four different
scenarios are presented to study the robustness of algorithm against communication delay,
actuator lag, disturbance, heterogeny and communication losses.
Sh. Chitsaz, H. Sadeghi Naeini, A. Nedayifard , H. Malekipour, A. Vahdad,
Volume 7, Issue 3 (9-2017)
Abstract
In this paper, the main objective is ergonomics evaluation of
automobile’s dashboard to devise suitable designs based on textures and
patterns. Undoubtedly appropriated dashboards' design based on textures
might be ended to more driving safety, in which the tactile-real and visualimplied
texture of a surface should be considered. In this study, data was
gathered by in-depth observation and questionnaires. Expert volunteers
who not only used their cars frequently, but also were fairly sensitive to the
effects of visual and tactile items in dashboard design automobile’s
manufacturers. Statistical data analyzing shows improving texture in
dashboard design has a significant influence on drivers'. The need to take
repeated glimpses in order to distinguish the operation of each button will
diminish, an issue significantly decreasing accident risk. The results show
the interaction between the product textures will be ended to users'
satisfaction and also product’s feature and performance. This study clarifies
the significance of dashboard texture, so industrial designers are expected
to work harder to make better use of textures in designing product elements.
A. Otadi, M. Masih-Tehrani , S.m. Boluhari , A. Darvish-Damavandi ,
Volume 7, Issue 3 (9-2017)
Abstract
In this paper, a three-axle bus rollover threshold and the effective parameters are studied. The rollover threshold is a speed that automotive is passing without occurring rollover. The objective is a determination of the heavy vehicle rollover critical speed while turning. For this purpose, a three-axle bus is studied. The dynamic equations related to rollover is extracted, and then rollover criterion, which is LTR (Load Transfer Ratio) in this paper, is obtained. The governing equations are simulated in MATLAB software and then the effect of the parameters such as steering rate, road curvature radius, road bank slope and automotive effective parameters on the rollover critical speed is studied. Prior to the investigation of these parameters, due to validation of the simulation model in MATLAB, a three-axle bus with specific parameters values is placed under various maneuvers with different conditions in TruckSim software then results are recorded. In order to validate, these results are compared with the results which are achieved from MATLAB. After validation, the relation between effective parameters in rollover stability and vehicle speed for desire maneuvers is obtained and it is illustrated in form of function. The results of this research work can be used in road threshold speed without huge computation costs and expensive tests.
A.h Kakaee, Sh. Mafi,
Volume 7, Issue 3 (9-2017)
Abstract
In this paper we aim to develop a predictive combustion model for a turbocharged engine in GT-Power software to better simulate engine characteristics and study its behavior under variety of conditions. Experimental data from combustion was initially being used for modelling combustion in software and these data were used for model calibration and result validation. EF7-TC engine was chosen for this research which is the first turbocharged engine designed and developed by IKCO and IPCO in Iran. After analyzing necessary theories for predictive combustion model and required steps for calibration of CombSITurb model in software, one final set of multipliers were calculated based on different sets derived for each engine speed and engine operation was simulated with this combustion model. In addition to improved predictability of engine model, comparing results of predictive model with non-predictive model shows better accuracy especially at lower engine speeds and less tolerance of results for each engine speed.
S.s. Hosseini, J. Marzbanrad,
Volume 7, Issue 4 (12-2017)
Abstract
Car design incorporates many engineering sciences where today, have led to the use of advanced technologies in automobiles to provide more satisfaction and comfort for the passengers, increase the quality of vehicles, efficiency and more pleasure than previous cars. These issues can be categorized into two groups in general. In the first group, the effects and performance of components involved in vehicle vibrations are considered, and in the second group, attention is paid to the importance of joints and junctions of these components. Heretofore, in order to minimize vehicle NVH (noise, vibration and harshness), an exuberance of efforts have been done to raise the passengers comfort. In the meantime, it should be noted that the engine mounts play a considerable and serious role in reducing vibration exchanged between the engine and chassis. In designing the engine mounts, the most important concern is to balance the two opposite criteria that come into the car as a result of different vibration inputs (road and motor). Generally, vehicle engine mounts are used by three types of targets (motor bearing weight, motor vibration absorption, motor overloading, acceleration or braking). With the development of the automotive industry, the tendency towards the use of more efficient engine mount categories, has been prepared.
This article describes a concise functional overview of the engine mount in automobiles; it illustrates operating frequency range, relationship of the P and boundary diagram of engine mounts with other car collections, torque roll axis, positioning public types of the car’s engine mounts; and it also compares their operations. Afterwards, the structure and the basic functional of hydraulic engine mount are described as the most common engine mount categories. Finally, advantages and disadvantages of various types engine mounts with capability of use in the vehicle (including elastomeric, hydraulic (with inertia track or/and decouplier or/and bell plate (plunger), semi-active (switchable) and active hydraulic engine mount) are compared with each other.
M. Salehpour, A. Jamali, A. Bagheri, N. Nariman-Zadeh,
Volume 7, Issue 4 (12-2017)
Abstract
In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm with crowding distance criterion are combined to fuziified mutation differential evolution to construct multi-objective algorithm to solve the problem. In order to achieve fuzzified mutation factor, two inputs as generation number and population diversity and one output as the mutation factor are used in the fuzzy inference system. The objective functions optimized simultaneously are namely, vertical acceleration of sprung mass, relative displacement between sprung mass and unsprung mass and control force. Optimization processes have been done in two bi- and three objective areas. Comparison of the obtained results with those in the literature has shown the superiority of the proposed method of this work. Further, it has been shown that the results of 3-objective optimization include those of bi-objective one, and therefore it gives more optimum options to the designer
R. Haji Abdolvahab, Gh.r. Molaeimanesh,
Volume 7, Issue 4 (12-2017)
Abstract
Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side where the electrochemical reaction is more sluggish. To discover the role of carbon paper GDL structure, different cathode electrodes with dissimilar anisotropy parameter are simulated via lattice Boltzmann method (LBM). The distributions of temperature through the GDL as well as the distribution of temperature on the catalyst layer are presented and analyzed. The results indicate that when the carbon fibres are more likely oriented normal to the catalyst layer the distribution of temperature becomes more uniform. Besides, the maximum temperature occurs in this case.
M.r. Emami Shaker , A. Ghaffari, A. Maghsoodpour, A. Khodayari,
Volume 7, Issue 4 (12-2017)
Abstract
The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) successfully solved the problems of price, size and weight with the traditional INS. Therefore they are commonly applied in GPS/INS integrated systems. The biggest problem of MEMS is the large sensor errors, which rapidly degrade the navigation performance in an exponential speed. Three levels of GPS/IMU integration structures, i.e. loose, tight and ultra tight GPS/IMU navigation, are proposed by researchers. The loose integration principles are given with detailed equations as well as the basic INS navigation principles. The Extended Kalman Filter (EKF) is introduced as the basic data fusion algorithm, which is also the core of the whole navigation system to be presented. The kinematic constraints of land vehicle navigation, i.e. velocity constraint and height constraint, are presented. A detailed implementation process of the GPS/IMU integration system is given. Based on the system model, we show the propagation of position standard errors with the tight integration structure under different scenarios. A real test with loose integration structure is carried out, and the EKF performances as well as the physical constraints are analyzed in detail.
S. Ebrahimi-Nejad, M. Kheybari,
Volume 7, Issue 4 (12-2017)
Abstract
Brake system performance significantly affects safety, handling and vehicle dynamics. Therefore, the objective of this paper is to discuss brake system characteristics and performance and component design parameters. We perform a detailed study of a specific brake system designed for Mercedes-AMG SLC-43, considering component design parameters and operational points, and finally conduct the vehicle braking system layout design. To this end, brake force and torque calculations and power dissipation modelling is performed. Then, ventilated brake discs are designed for the front and rear brakes. A main goal of the present article is to apply digital logic method to the material selection procedure among the candidate material proposed for brake components and rank the materials according to performance indices. The performance indices of five candidate materials were calculated and compared to select the best option for application in the brake disc. Finally, the calculations of the brake pedal, booster, cylinder, hoses and tubes are obtained.
K. Annamalai, G. Balaji,
Volume 7, Issue 4 (12-2017)
Abstract
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel crash boxes embedded with aluminium honeycomb of varying thickness and cell sizes are investigated. Five variants of honeycomb thickness, namely; Thickness-1, Thickness-2, Thickness-3,Thickness-4, Thickness-5 and six variants of honeycomb cell size, namely; CellSize-1, CellSize-2, CellSize-3, CellSize4, CellSize-5 and CellSize-6 are considered for the crash box analysis. Numerical crash analysis is performed for the novel reinforced sandwich honeycomb separated by steel plates in HSS crash box. A further study is also performed by inducing V-Notch triggers in the honeycomb to evaluate the effect of crashworthiness parameters. A comparative numerical investigation is performed to realize the effect of geometric parameters on the crashworthiness variables of crash boxes for low-velocity impact. The force versus displacement curves were derived and analyzed for each parameter variations and detailed comprehension of deformation pattern and energy absorption are provided. The objectives of the present work is to showcase the effect of honeycomb geometric parameters like thickness and cell size on crashworthiness parameters for low-velocity impact and also to represent the effect of sandwich honeycomb and honeycomb with V-Notch triggers methodology on the crashworthiness parameters like initial peak force (IPF), energy absorption (EA), specific energy absorption (SEA) and crush force efficiency (CFE)
N. Kumar Konada, K.n.s. Suman, S. Siva Kumar,
Volume 8, Issue 1 (3-2018)
Abstract
The ability to absorb vibrations in a vehicle during braking conditions depends primarily on the selection of ingredients for a friction material and interfacial adhesion between all these ingredients. In this work, a hybrid brake friction material is developed by combination of carbon fiber (CF), glass fiber (GF), resin and other ingredients. The surfaces of carbon and glass fibers are chemically inert and hydrophobic in nature. Therefore, CF and GF surfaces are modified with surface treatments to increase hydroxyl or carboxyl groups on the surface. An attempt is made to improve the bonding strength between CF, GF, ingredients and polymer matrix. CF surface is modified by oxidation, HNO3 treatment and grafting multi walled carbon nano tubes functionalized (MWCNT-F) on CF. GF surface is modified by HNO3 treatment. Carbon fiber and glass fiber content after surface modifications is mixed with all the ingredients and resin. Friction composite sheets are fabricated by using hand layup method. The resulting materials are characterized by SEM, TGA and FTIR analysis. MWCNTs-F on CF surface is observed. Sample specimens are cut from the friction composite sheets and damping behaviour of the specimens is evaluated by using FFT analyzer. The best surface treatment method and ingredients are selected to fabricate a friction material to reduce squeal generation at the interface between brake disc and pad.
M. Heidari,
Volume 8, Issue 1 (3-2018)
Abstract
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the health condition of the gearbox in a timely manner to eliminate the impending faults. However, useful fault detection information is often submerged in heavy background noise. The non-stationary vibration signals were analyzed to reveal the operation state of the gearbox. The proposed method is applied to the fault diagnosis of gears and bearings in the gearbox. The diagnosis results show that the proposed method is able to reliably identify the different fault categories which include both single fault and compound faults, which has a better classification performance compared to any one of the individual classifiers. The vibration dataset is used from a test rig in Shahrekord University and a gearbox from Sepahan Cement. Eventually, the gearbox faults are classified using these statistical features as input to WSVM.
J. Zareei, A. Rohani, Wan Mohd,
Volume 8, Issue 1 (3-2018)
Abstract
To improve the engine performance and reduce emissions, factors such as changing ignition and injection timing along with converting of port injection system to direct injection in SI(spark-ignited) engines and hydrogen enrichment to CNG fuel at WOT conditions have a great importance. In this work, which was investigated experimentally (for CNG engine) and theoretically (for combustion Eddy Break-Up model and turbulence model is used) in a single- cylinder four-stroke SI engine at various engine speeds (2000-6000 rpm in 1000 rpm intervals), injection timing (130-210 crank angle(CA) in 50 CA intervals), ignition timing (19-28 CA in 2 degree intervals), 20 bar injection pressure and five hydrogen volume fraction 0% to 50% in the blend of HCNG. The results showed that fuel conversion efficiency, torque and power output were increased, while duration of heat release rate was shortened and found to be advanced. NOx emission was increased with the increase of hydrogen addition in the blend and the lowest NOx was obtained at the lowest speed and retarded ignition timing, hence 19° before top dead center.
J. Sharifi, A. Amirjamshidy,
Volume 8, Issue 1 (3-2018)
Abstract
The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzziness, it behaves like a robust control, hence it is suitable for control of nonlinear uncertain systems which uncertainty may be due to parameter variation or un-modeled dynamics. The controller output for stabilization of vehicle is corrective yaw moment. Controller output is the torque that distribute by braking and acceleration on both sides of the vehicle. We simulate our designs on MATLAB software. Some drive maneuvers will be carry to validate system performance in vehicle stability maintenance. Simulation results indicate that distributed torque-brake control strategy based on Type-2 fuzzy logic controller can improve the stability and maneuverability of vehicle, significantly in comparison with uncontrolled vehicle and Type-1 fuzzy ESC. Furthermore, we compare the conventional braking ESC with our designed ESC, i.e. distributed exertion of torque ESC and braking ESC in view point of both stabilization and performance. As we will see, proposed ESC can decrease vehicle speed reduction, in addition to better vehicle stability maintenance.
K. Annamalai, G. Balaji,
Volume 8, Issue 1 (3-2018)
Abstract
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel crash boxes embedded with aluminium honeycomb of varying thickness and cell sizes are investigated. Five variants of honeycomb thickness, namely; Thickness-1, Thickness-2, Thickness-3, Thickness-4, Thickness-5 and six variants of honeycomb cell size, namely; CellSize-1, CellSize-2, CellSize-3, CellSize4, CellSize-5 and CellSize-6 are considered for the crash box analysis. Numerical crash analysis is performed for the novel reinforced sandwich honeycomb separated by steel plates in HSS crash box. A further study is also performed by inducing V-Notch triggers in the honeycomb to evaluate the effect of crashworthiness parameters. A comparative numerical investigation is performed to realize the effect of geometric parameters on the crashworthiness variables of crash boxes for low-velocity impact. The force versus displacement curves were derived and analyzed for each parameter variations and detailed comprehension of deformation pattern and energy absorption are provided. The objectives of the present work is to showcase the effect of honeycomb geometric parameters like thickness and cell size on crashworthiness parameters for low-velocity impact and also to represent the effect of sandwich honeycomb and honeycomb with V-Notch triggers methodology on the crashworthiness parameters like initial peak force (IPF), energy absorption (EA), specific energy absorption (SEA) and crush force efficiency (CFE).
Dr Behrooz Mashhadi, Dr Amirhasan Kakaee, Mr Ahmad Jafari,
Volume 9, Issue 1 (3-2019)
Abstract
In this research, a high-temperature Rankin cycle (HTRC) with two-stage pumping is presented and investigated. In this cycle, two different pressures and mass flow rates in the HTRC result in two advantages. First, the possibility of direct recovery from the engine block by working fluid of water, which is a low quality waste heat source, is created in a HTRC. Secondly, by doing this, the mean effective temperature of heat addition increases, and hence the efficiency of the Rankin cycle also improves.
The proposed cycle was examined with the thermodynamic model. The results showed that in a HTRC with a two-stage pumping with an increase of 8% in the mean effective temperature of heat addition, the cycle efficiency is slightly improved. Although the operational work obtained from the waste heat recovery from the engine cooling system was insignificant, the effect of the innovation on the recovery from the exhaust was significant. The innovation seems not economical for this low produced energy. However, it should be said that although the effect of the innovation on the increase of the recovery cycle efficiency is low, the changes that must be implemented in the system are also low.
Dr Amirhasan Kakaee, Mr Mohammadreza Karami,
Volume 9, Issue 2 (6-2019)
Abstract
In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. According to the increasing usage of this type of injectors in ICE, more studies should be conducted to find the most accurate and beneficial models for modeling this phenomenon.
In order to find an accurate and beneficial turbulence model ,in this study, three Reynolds-averaged Navier–Stokes (RANS) turbulence models (SST k-ω, RNG and standard k ) and large eddy simulation (LES) turbulence model were compared by the fuel jet characteristics in three regions (outlet of the nozzle, at Mach disk and at the downstream of the flow). Although the LES model needs more time for each test, the results are more reliable and accurate. On the other hand, RANS turbulence models have lots of errors (more than 10 percent) especially for predicting the characteristics of fuel jet at Mach disk.
Prof Nouby Ghazaly, Prof K. A Abd El-Gwwad,
Volume 9, Issue 2 (6-2019)
Abstract
The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, Yttria-stabilized Zirconia, Magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces are examined. Comparison between simulated results for aluminum, steel and cast iron materials are reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for Magnesia-stabilized zirconia, Yttria-stabilized Zirconia, Mullite and Alumina coated materials.
Dr Javad Zareei, Prof Mohamad Hasn Aghakhani, Mr Saeed Ahmadipour,
Volume 9, Issue 3 (9-2019)
Abstract
Changing the compression ratio and presence of turbocharger are two important issues, affecting on performance, and exhaust emissions in internal combustion engines. To study the functional properties and exhaust emissions in regards to compression ratio at different speeds, the numerical solution of the governing equations on the fluid flow inside the combustion chamber and the numerical solution of one-dimensional computational fluid dynamics with the GT-Power software carried out. The diesel engine was with a displacement of 6.4 Lit and Turbocharged six-cylinder. In this engine was chosen, the compression ratio between 15: 1 and 19: 1 with intervals of one unit and the range of engine speed was from 800 to 2400 rpm. The results showed that by the presence of a turbocharger and changing the compression ratio from 17: 1 to 19: 1, the braking power and torque increased by about 56.24% compared to the non-turbocharged engine. In addition, was reduced the brake specific fuel consumption due to higher power output. The amount of CO and HC emissions decreases based on the reduction of the compression ratio compared to the based case, and the NOX value increases due to the production of higher heat than turbocharged engines. The overall results showed that the turbocharged engine with a 19: 1 compression ratio has the best performance and pollution characteristics.