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Abstract 

The Global Positioning System (GPS) and an Inertial Navigation System (INS) are two basic navigation 

systems. Due to their complementary characters in many aspects, a GPS/INS integrated navigation system 

has been a hot research topic in the recent decade. The Micro Electrical Mechanical Sensors (MEMS) 

successfully solved the problems of price, size and weight with the traditional INS. Therefore they are 

commonly applied in GPS/INS integrated systems. The biggest problem of MEMS is the large sensor 

errors, which rapidly degrade the navigation performance in an exponential speed. Three levels of 

GPS/IMU integration structures, i.e. loose, tight and ultra tight GPS/IMU navigation, are proposed by 

researchers. The loose integration principles are given with detailed equations as well as the basic INS 

navigation principles. The Extended Kalman Filter (EKF) is introduced as the basic data fusion algorithm, 

which is also the core of the whole navigation system to be presented. The kinematic constraints of land 

vehicle navigation, i.e. velocity constraint and height constraint, are presented. A detailed implementation 

process of the GPS/IMU integration system is given. Based on the system model, we show the propagation 

of position standard errors with the tight integration structure under different scenarios. A real test with 

loose integration structure is carried out, and the EKF performances as well as the physical constraints are 

analyzed in detail.  
Keywords: GPS/INS Integration, Vehicle Navigation, INS Error Analysis, Kalman Filtering. 

1. Introduction 

 Inertial Navigation Systems (INS) utilize inertial 

sensors to provide navigation information 

continuously with time [1]. In a Strapdown 3D INS 

with full Inertial Measurements Unit (IMU) [2], three 

acceleration sensors (Accelerometers) and three 

angular rate sensors (Gyroscopes) are utilized. The 

accelerometers measure the acceleration of the 

moving body in three orthogonal directions. 

Gyroscope measures the rotation rate around these 

three basic orthogonal axes. The essential functions in 

INS are defined as follows: 1) Determination of the 

angular motion of a vehicle using gyroscopic sensors, 

from which its attitude relative to a reference frame 

may be derived. 2) Measure the acceleration using 

accelerometers. 3) Resolve the acceleration 

measurements into the reference frame using the 

knowledge of attitude. 4) Account for the gravity 

component. 5) Integrate the resolved accelerations to 

estimate the velocity and position of the vehicle. 

Although INS systems have good short term 

accuracy, there are two main problems in using such a 

scheme. The first problem is the sensor imperfections 

and drifts [3]. The second problem is that the 

measurements of such sensors must be 

mathematically integrated to provide velocity, 

position, and attitude information. Integration causes 

errors to accumulate [4] resulting in huge drifts over 

time that growth without bounds. On the other side, 

GPS systems provide consistent long term accuracy 

giving position and velocity updates using GPS 

satellites signals processing [5]. A major problem of 

GPS is signal blockage and multi-path in urban 

canyons, under buildings, and tunnels. In these 

environments, signal may be difficult to acquire or 

number of satellites available may be not sufficient to 

provide position information [6]. Based on the 

complementary error characteristics of INS and GPS, 

an integrated solution using both systems is often 

used. Although there are many approaches to fuse 

data from both systems, KF is most widely used [7]. 
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KF utilizes an error dynamic model of the INS system 

errors to implement two main steps: Prediction step 

and Update step. Prediction step is done as long as no 

GPS update is available. In this step, the system uses 

the error dynamic model to estimate the INS errors. In 

the update step, GPS velocity and position 

measurements are used to get optimal estimate of INS 

errors. Thus, by subtracting INS errors from the INS 

output, accurate navigation information is obtained. 

This integration scheme is called loosely coupled 

which is utilized here in this work. This scheme is 

shown in Fig. 1. 

2. MEMS-based INS 

The strapdown inertial navigation system (INS) 

involves mechanization equations, which are the 

numerical tool to implement the physical 

phenomenon that relates the inertial sensor 

measurements to the navigation state (i.e., position, 

velocity and attitude) [8, 9]. The shaded rectangle in 

Figure 2 represents the INS mechanization equations 

that can describe the motion of a vehicle, taking as 

input the inertial measures in the body frame 

(accelerations and angular rotations) and converting 

these measurements into a reference frame for 

navigation. In this case, it provides position, velocity 

and attitude of the vehicle with respect to the North-

East-Down (NED) local geodetic frame.  

The inertial measurement unit (IMU), which is 

part of the INS, is the device where the inertial 

sensors are mounted; it provides the accelerations and 

angular rotations along three orthogonal directions 

with respect to the body frame (Figure 2). In a low-

cost INS (MEMS grade), the measurement of these 

accelerometer and gyro sensors is affected by 

different errors, which can be classified as 

deterministic and stochastic errors. Figure 3 depicts 

some of these errors through a simple relationship 

between IMU physical signal and the sensor output. 

Deterministic errors are due to manufacturing and 

mounting defects and can be calibrated out from the 

data; on the other hand, the stochastic errors are the 

random errors that occur due to random variations of 

bias or scale factor over time [10]. There are several 

errors that affect the inertial sensors: the 

misalignment errors are the result of non-

orthogonalities of the sensor axes and are usually 

treated as deterministic error. The scale factor 

represents the sensibility of the sensor, and it is the 

result of manufacturing tolerances or aging; it is 

usually divided between a linear and a non-linear part, 

where the linear part is obtained from calibration, 

while the non-linear is modeled with a stochastic 

process [11]. In the case of the bias, it is divided 

between bias turn-on and bias-drift: the bias turn-on is 

constant, but it varies from turn-on to turn-on and is 

considered as a deterministic error; the bias-drift 

presents a random behavior and needs to be modeled 

with a stochastic process [12, 13]. Regarding the 

random error (Figure 2), this is an additional signal 

resulting from noise of the sensor itself or other 

components that interfere with the signal provided by 

the sensor; it is also considered as part of the 

stochastic error of the sensor. The deterministic errors 

can be minimized before implementing the 

mechanization equations by following different 

procedures through laboratory calibrations. In this 

work, we focused on the stochastic error, specifically, 

in the bias-drift, since the stochastic modeling of this 

error is a challenging task, not only because of the 

random nature, but also because it seriously affects 

the performance of a navigation system. Therefore, a 

suitable estimation of the stochastic model parameters 

of this error will improve the performance of the INS; 

as a consequence, the input error to the mechanization 

stage (Figure 1) can be compensated and, in turn, the 

position error minimized. 

 

 

 
 

Fig1.  INS/GPS Integration in Loosely Coupled scheme 
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Fig2. Navigation frame inertial navigation system (INS) mechanization; figure kindly taken from [14]. 

 

 
 

Fig3. Inertial sensor error modeling; figure kindly taken from [15]. 

 

3. Perturbation of the Navigation Equation 
The error analysis in this paper utilizes perturbation 

methods to linearize the nonlinear system differential 

equations. For example, the perturbation of the 

position, velocity and attitude DCM can be expressed 

as: 

(1)  ̂         

(2)  ̂         

(3)  ̂ 
  (    )  

  

Where, e.g.  ̂  is computed velocity,    is true 

velocity and     is computed velocity error. Also    

is the skew symmetric form of the attitude errors: 

(4) 
   [

      
      
      

] 

Using above equations, the state vector can be 

defined as (5): 

(5)   [        ] 

Where     is the position error vector,     is the 

velocity error vector and    is the attitude error 

vector.  

3.1. Position Error Equation 

The position error dynamics equation can be obtained 

using the partial derivatives, because the position 

equations are a function of position and velocity. 
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Where,   and  , the radii curvature in the meridian 

and prime vertical are considered as constants.  

3.2. Velocity Error Equation 

The computed version of velocity can be obtained as 

(9). 

 ̂̇   ̂ 
   ̃  (  ̂  

   ̂  
 )   ̂     (9) 

The velocity error dynamics can be written as (10). 

  ̇       
       

  (   )     
      (10) 

Where:
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3.3 Attitude Error Equation 

The attitude error dynamics can be written as (13). 
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3.4. Continuous INS Error Dynamics 

The final, continuous error model can be constructed 

as (16). 

 ̇        (16) 

Where   is the dynamic matrix,   is the state vector, 

  is the design matrix and   is the forcing vector 

function.  
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The specific force,   , is the sensed output of the 

accelerometer transformed into the navigation frame. 

The specific force is a combination of internal and 

gravitational accelerations: 

     
  ̈    (21) 

Where   is the gravitational acceleration. The 

specific force vector is defined as 
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The total angular velocity of the local-level 

navigation frame with respect to the inertial frame be 

expressed as 

   
     

     
  (23) 

or  
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(24) 

4. Loosely-Coupled KF Integration 
It is common to blend GPS and INS using different 

integration approaches (i.e., loosely-coupled, tightly-

coupled or ultra-tightly coupled; see [13]). In this 

paper, we confine our attention in the loosely-coupled 

(LC) approach, because this strategy can be used to 

evaluate the behavior of the inertial sensor stochastic 

model without any additional support during partial or 

complete GPS outages, which is not the case of the 

tightly-coupled integration, where one satellite signal 

available might be used to compute the Extended 

Kalman Filter (KF; i.e., tightly-coupled uses GPS 

estimates of pseudoranges and Doppler determined by 

using satellite ephemeris data). There are two ways to 

implement the LC strategy: feed-forward and feed-

back. The first one is used in systems that have a 

high-performance inertial measurement unit (IMU), 

as it merges the GPS/INS information, but it has no 

control over the error that may occur in the IMU; it 

basically works with an open-loop architecture. On 

the other hand, the feed-back includes a close loop 

that allows us to correct the INS error, where in the 

case of a GPS outage, the navigation solution will 

depend only on the INS, which will be corrected by 

its correspondent inertial sensor error model. The 

block diagram of the GPS/INS integration with 

feedback is shown in Figure 4. 

In this strategy, the position and velocity obtained 

from the mechanization (    
  and     

 ) are combined 

with the GPS, which delivers velocity and position 

data (    
  and      

 ). The residual error (    and 

   ) calculated from the GPS and INS outputs is the 

input to the Kalman Filter (KF), where a state-space 

model is built with error states for navigation and 

IMU errors. The error states related to the IMU errors 
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are fed back though the closed loop in order to 

correct the INS navigation solution. The system 

model for loosely-coupled approach is given by 

position error, velocity error and attitude error, which 

represent the navigation error states, i.e., a total of 

nine states for 3D navigation.  Moreover, the scale 

factors and bias for gyro and accelerometers are 

included in the IMU error states, and the number of 

states will depend on the stochastic model employed. 

 

 
Fig4. Loosely-coupled Kalman Filter (KF) integration with feedback; figure kindly taken from [] 

 

    
Fig5. The experimental setup 

 

 
Fig6. Path of the vehicle 
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Fig7. Longitudinal of the vehicle 

 
Fig8. Latitude of the vehicle 

 
Fig9. Vehicle acceleration in X-axis 

 

Fig10. . Vehicle acceleration in Y-axis
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Fig11. Vehicle acceleration in Z-axis 

 
Fig12. Vehicle angular velocity in X-axis 

 
Fig13. Vehicle angular velocity in Y-axis 

 
Fig14. Vehicle angular velocity in Z-axis
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Fig15. 𝜃 angle of the vehicle 

 
Fig16.   angle of the vehicle 

 
Fig17.   angle of the vehicle 

 

Fig18. longitudinal velocity of the vehicle 
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5. Implementation and Experimental Results 
To implement the proposed algorithm, a MPU 9250 

and U-blox Neo6m have been used as an inertial 

measurement unit and GPS receiver, respectively.  

These sensors are mounted on the vehicle for 

navigation purposes. Figure (5) and Figure (6) show 

the experimental setup and path for the vehicle 

navigation, respectively.  

The proposed data fusion algorithm has been used 

to estimate the position, velocity and attitude of the 

vehicle. Figure (7) and Figure (8) shows the 

longitudinal and latitude of the vehicle in the path, 

respectively. 

The accelerations of the vehicle in XYZ inertial 

frame have been shown in Figure (9) to Figure (11). 

Angular velocities of the vehicle in XYZ inertial 

frame have been shown in Figure (12) to Figure (14). 

Figure (15) to Figure (17) show the attitudes of 

the vehicle in XYZ inertial frame. 

The longitudinal velocity of the vehicle has been 

shown in Figure (18). 

6. Conclusions 

 
This paper has shown an effective combination of two 

separated systems (GPS and INS) which have their 

own advantages and drawbacks. The low-cost IMU is 

a self-obtained sensor which is not capable of 

determining reasonable position information. GPS, in 

contrast, gives good results, but is only able to 

calculate every single second. This paper has shown 

the basic integration method of GPS and INS and 

estimation techniques. Loosely coupled has been used 

for data fusion of INS and GPS. The proposed 

algorithm, has been tested in experimental test and the 

results show that this coupling method can reduce the 

drift in measure kinematical variables.  
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