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Electric Power Steering (EPS) systems are increasingly being integrated 

into modern vehicles, offering enhanced fuel efficiency and improved 

maneuverability. However, these systems are often subject to noise and 

disturbances, which can significantly impact steering precision and driver 

comfort. Addressing these challenges requires the implementation of 

robust control strategies capable of mitigating noise and disturbances in 

EPS systems. This paper explores advanced methods for achieving robust 

control in Electric Power Steering systems by reducing noise interference 

and countering external disturbances. Key techniques involve adaptive 

control algorithms and robust filtering mechanisms that maintain system 

stability and performance even under variable operating conditions. 

Experimental results demonstrate that these robust control approaches 

effectively minimize noise levels and disturbance impacts, leading to 

smoother steering response and greater reliability. This study underscores 

the critical role of robust control in enhancing the functionality and safety 

of Electric Power Steering systems while highlighting the intricate 

dynamics between noise, disturbances, and control system robustness in 

automotive applications. 
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1. Introduction 

Today’s ground vehicles are among the most 

significant examples of electronic control system 

applications. Over the last two decades, advances 

in electronics have resulted in the widespread use 

of electronic control systems in ground vehicles. 

Automotive control and mechatronics have 

become essential in improving safety, reducing 

pollutant emissions, and providing fuel economy 

[1]. In Europe, 160 billion euros are lost annually 

due to accidents, equivalent to 2% of the GNP of 

Europe. There are 41,000 deaths and a large 

number of injuries resulting from road vehicle 

accidents each year [2]. Vehicle control systems, 

such as electric power steering, are crucial for 

preventing accidents and reducing fatalities and 

serious injuries. Examples of control systems 

applied to passenger vehicles include Anti-lock 
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Braking System (ABS), Traction Control 

Systems (TCS), Electronic Stability Control 

(ESC), Adaptive Cruise Control (ACC), Rollover 

Avoidance System, Lane Departure Warning, 

and Lane Keeping Assistance Systems 

(LDW/LKA), as well as Collision Warning and 

Collision Avoidance Systems (CW/CA). The 

design, improvement, and adaptation of new 

control systems continue at university research 

labs and automotive companies' R&D centers. 

Moreover, the use of electric power steering and 

other vehicle control systems is rapidly 

increasing. For example, in 1995, only 5% of new 

cars in Germany were equipped with ESP; by 

2004, the proportion in Europe rose to 36%, with 

even higher rates in some European countries, 

such as 67% in Germany [3]. Electric Power 

Steering (EPS) systems have become 

increasingly prevalent in modern vehicles due to 

their efficiency and performance benefits. A 2024 

study highlights the advantages of EPS, including 

enhanced steering flexibility and improved 

vehicle stability [4]. Vehicle control systems, 

including electric power steering, are essential 

components of intelligent vehicles and intelligent 

transportation systems, working alongside 

sensing and perception technologies. Robust 

Control of these systems is necessary for ensuring 

safe and efficient operation, with a focus on 

objectives and constraints specific to autonomy in 

vehicles. Today’s control systems, such as ACC 

and LKA, represent initial examples of 

autonomous behavior, supported by electric 

power steering for enhanced maneuverability. 

The development of vehicle control systems, 

including robust Disturbance Rejection and 

Noise Suppression techniques, plays a significant 

role in advancing intelligent autonomous vehicles 

[5]. 

In addition to their importance in intelligent 

vehicles and intelligent transportation systems, 

control systems for electric vehicles pose unique 

challenges. There is growing interest in fully 

electric vehicles within the automotive industry 

as meeting new and upcoming emission 

regulations for internal combustion engines 

becomes more challenging. Consequently, some 

automotive producers are introducing various 

fully electric vehicles to the commercial market, 

while others are building and evaluating research 

prototypes. Fully electric vehicles, which 

typically do not have internal combustion 

engines, are lighter and exhibit different dynamic 

characteristics compared to their predecessors. 

As a result, their electronic control systems, 

including electric power steering, must be 

redesigned to accommodate these changes [6]. 

For example, regenerative braking in fully 

electric vehicles must be considered when 

designing braking controllers, such as ABS [7].  

Despite significant advancements in Electric 

Power Steering (EPS) systems, existing research 

has primarily focused on isolated robust control 

strategies for addressing noise and disturbance 

challenges. However, these approaches often lack 

the adaptability and comprehensive validation 

necessary to handle the complex dynamics of 

real-world EPS applications. This study 

introduces a novel integration of parameter-

space-based robust control techniques and 

adaptive disturbance observer methodologies to 

achieve a more holistic solution. 

Our key contributions are as follows: 

1. Innovative Robust Control Design: A 

novel robust PI controller framework is 

developed, utilizing parameter space 

mapping to ensure stability and 

performance under significant variations 

in system parameters and external 

disturbances. 

2. Enhanced Noise Suppression: 

Advanced filtering techniques are 

implemented, providing measurable 

improvements in noise reduction and 

ensuring smoother steering responses 

even under variable operating conditions. 

3. Comprehensive Validation: The 

proposed methodologies are 

experimentally validated, demonstrating 

superior robustness, reduced noise levels, 

and enhanced steering precision 

compared to conventional techniques. 

4. Practical Impact: The research bridges 

critical gaps by addressing both 

theoretical and practical limitations in 

EPS systems, offering scalable solutions 

for improved driver comfort, safety, and 

reliability. 
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This work represents a significant advancement 

in EPS system control, offering a comprehensive 

approach that outperforms existing 

methodologies in robustness, adaptability, and 

real-world application. By addressing persistent 

challenges in noise suppression and disturbance 

rejection, the study establishes a strong 

foundation for future research in intelligent and 

autonomous vehicle systems. 

2. Modeling 

This section describes the DC motor modeling. 

Figure 1 shows the dc motor scheme with its 

electrical and mechanical parts. 

 Using kirchhoff’s law, the following equation is 

obtained. 

𝑉𝑚 = 𝐿𝑚
𝑑𝐼𝑚
𝑑𝑡

+ 𝑅𝑚𝐼𝑚 + 𝐾𝑖𝑊𝑚 (1) 

where vm is the voltage from the amplifier which 

drives the motor, rm is the motor armature 

resistance, im is the motor armature current, lm is 

the motor armature inductance, ki is the back- emf 

constant and ωm is the motor angular speed [8]. 

The dynamics of the motor is given by newton’s 

second equation with the following Equation: 

𝑗�̇�𝑚 = 𝐾𝑚𝐼𝑚 + 𝜏𝑑  (2) 

Where j is the total moment of inertia (motor 

rotor and the load), τd is the disturbance torque 

and km is the motor torque constant. In SI units, 

the motor torque constant is equal to back-EMF 

constant, that is ki = km. After this, km is used for 

both constants. 

Using (1) and (2) and assuming lm << rm and 

neglecting the viscous friction in the system, the 

transfer function g(s) from voltage applied to the 

motor to motor angular speed can be written as 

follows: 

𝐺(𝑠) =
𝐾𝑚

𝑅𝑚 (𝐽𝑆 +
𝐾𝑚
2

𝑅𝑚
)

  (3)
 

The open loop block diagram of the motor with 

torque disturbance is depicted in figure 2. 

 

FIGURE 2: Open loop block diagram of the dc 

motor with torque disturbance 

In the simulations and experiments with DC 

motor set which includes a Maxon high quality 

dc motor is used. The nominal parameters of the 

dc motor used is given at table 1. 

Table 1: The nominal parameters of the dc motor[9]. 

Parameter Value Unit 

Km 0.0502 Nm/a 

J 22.1×10−6 Kgm2 

Rm 10.6 Ω 

 

Two parameters km and j are taken as uncertain 

parameters considering ±20% uncertainty on 

nominal values. Values are between 0.0402 and 

0.0602 nm/a and values are between 17.68 × 10−6 

and 26.52 × 10−6 kgm2. An uncertainty box is 

Depicted in figure 3 for showing these 

uncertainties[10]. 
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Figure 3: Uncertainty box for the motor 

parameters 

3.Methodology 

In this section, a robust PI controller design 

methodology based on parameter space approach 

is introduced. The mapping of multi-objective 

design requirements into the parameter space is 

explained including Hurwitz stability, d-stability, 

phase margin bounds and frequency domain 

(mixed sensitivity) bounds mapping. The PI 

controlled closed loop system can be seen from 

figure 4. 3.1 Hurwitz stability 

Consider the plant is given by 

𝑮(𝒔) =
𝑵(𝒔)

𝑫(𝒔𝟎)
 (𝟒) 

Where n represents the numerator of the plant and 

d represents the denominator of the plant. The 

real and imaginer parts of the numerator and 

denominator can be defined as: 

𝒏(𝒋𝝎) =  𝒏𝒓 (𝝎) +  𝒋𝒏𝒊 (𝝎) (𝟓)  

𝒅(𝒋𝝎) =  𝒅𝒓 (𝝎) +  𝒋𝒅𝒊 (𝝎) (𝟔) 

The pi controlled closed loop system 

characteristic equation can be written as 

Pc (s) = sd(s)+(kps+ki)n(s) = an+1s
n+1 +ans

n 

+···+a1s+a0 = 0 

(7) 

Where n is the degree of the plant g(s). 

The Hurwitz stability boundary crossed by a pair 

of complex conjugate roots is characterized by 

the following equations: 

Re[pc (jω)] = 0                                                  (8)  

im[pc (jω)] = 0, ∀ω ∈ (0,∞]                              (9) 

this is called as complex root boundary (CRB). 

There may be a real root boundary such that a 

single real root crosses the boundary at frequency 

ω = 0 is characterized by 

pc (0) = 0 or a0 = 0                                          (10)                  

This is called as real root boundary (RRB). 

There may exists an infinite root boundary (IRB) 

which is characterized by a degree drop in 

characteristic polynomial at ω = ∞. This degree

 

 

FIGURE 4: PI controlled closed system block diagram 
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drop in characteristic polynomial is characterized 

as 

An+1 = 0                                                           (11)  

CRB, RRB and IRB solutions by parameterizing 

ω can be plotted into the kp − ki parameter plane 

to show the Hurwitz stability regions of the given 

closed loop system. The kp −ki values which 

provide Hurwitz stability can be chosen visually 

from the stable region of the parameter plane. The 

aforementioned parameter space computation 

method to determine Hurwitz stability regions 

can be extended to specify relative stability 

regions such as d-stability. A closed loop system 

is d-stable when the roots of the closed loop 

characteristic equation lie in the d-stable region 

in the complex plane as depicted in figure 5. 

Figure 5 provides critical insights into the 

stability of the closed-loop system. It 

demonstrates the impact of varying proportional 

(Kp) and integral (Ki) gains on system stability. 

The shaded region represents robust parameter 

choices, while the boundaries ∂1, ∂2, and ∂3 reflect 

specific constraints related to root placement, 

damping characteristics, and disturbance 

rejection. This analysis supports the design of 

controllers with enhanced stability and 

robustness. Note that for ∂1, no Infinite Root 

Boundary (IRB) exists due to the bounded nature 

of the d-shaped region. 

 

FIGURE 5: The d-stable region in the complex 

plane showing boundaries ∂1, ∂2, and ∂3 

The shaded region indicates stable parameter 

combinations. This visualization aids in robust 

controller design by identifying regions where 

system stability criteria are satisfied, including 

Hurwitz and d-stability conditions.The boundary 

∂1 in figure 5 can be mapped into the parameter 

space by using s−σ instead of s in (6) in order to 

shift the stability boundary to ∂1 in the complex 

plane. For the ∂1 boundary, the absence of the 

Infinite Root Boundary (IRB) is a direct 

consequence of the bounded nature of the d-

shaped stability region. In this region, the 

characteristic polynomial does not exhibit a 

degree drop at s→∞ as s=∞ is excluded by 

construction. This ensures that all roots remain 

finite and confined within the mapped parameter 

space. Solving for kp and ki in (7) for CRB and (8) 

for RRB, and then plotting results in the kp−ki 

plane will result in the ∂1 boundary in the 

parameter space. For ∂1 boundary, there is no IRB 

because s is never equal to infinity in the d-shaped 

region. For mapping ∂2 boundary, use rejθ for s in 

(6) and parameterize r in rejθ to obtain the CRB of 

∂2. No RRB and IRB solution exists because r is 

never equal to zero or infinity. Lastly, ∂3 

boundary maps into the parameter space by 

substituting s with rejθ where r is constant and 

parameterizing over θ in (6). This results in CRB 

for changing θ and RRB for θ = 0[11]. 

3.2 ILSC system structure 

The proposed ILSC system consists of 

subsystems such as corrective yaw moment 

calculation, braking torque distribution 

algorithm, wheel slip control and torque 

reduction algorithm. The corrective yaw moment 

calculation is based on a scheduled LQR 

controller. The corrective yaw moment actuation 

is achieved through individual wheel braking. 

The braking torque distribution algorithm and 

wheel slip controls are also used at the lower 

control level. The wheel slip controller is a bang-

bang controller where the desired slip ratios are 

determined based on a scheduled LQR controller. 
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In addition to the individual braking intervention, 

electric motor torque reduction is applied when 

the individual braking is not enough to provide 

lateral stability of the vehicle. Figure 6 shows the 

control structure of the proposed ILSC system. 

The inputs of the vehicle are front wheel steering 

angle (δf ), the tire braking pressures (pbi) and the 

torque reduction command. The outputs of the 

vehicle are the vehicle side slip angle (β), the 

vehicle yaw rate (r), the vehicle velocity (v) and 

individual wheel angular velocities (ωi). The 

lateral stability control algorithm needs 

measurement or estimation of several vehicle 

variables. For example, yaw rate and wheel 

angular velocities are easily measured using 

standard sensors. In contrast, vehicle side slip 

angle, tire-road friction coefficient and vehicle 

velocity should be estimated since the 

measurement of these variables is not 

economically feasible for commercial road 

vehicles. Several studies on the estimation of the 

aforementioned vehicle parameters is available in 

the literature [79–82]. The ILSC system, as 

shown in Figure 6, integrates multiple control 

subsystems to enhance lateral stability. The 

corrective yaw moment (Mz) is computed using a 

Linear Quadratic Regulator (LQR) based on the 

errors in the vehicle's yaw rate (𝑟) and side-slip 

angle (β). This moment is then distributed among 

the individual wheels through a braking torque 

distribution algorithm. The wheel slip ratios are 

regulated using a bang-bang control strategy to 

prevent excessive slip and maintain traction. If 

individual braking is insufficient, a torque 

reduction algorithm reduces the electric motor's 

output torque, ensuring stability under extreme 

conditions. The combination of these 

mechanisms allows the ILSC system to provide 

robust lateral stability across a wide range of 

operating conditions. The proposed control 

system structure is shown in figure 6.  

 

 

FIGURE 6: Integrated Lateral Stability Control (ILSC) system structure. The algorithm incorporates 

corrective yaw moment calculation, braking torque distribution, wheel slip control using bang-bang logic, and 

torque reduction to ensure lateral stability. 
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In the desired value generation subsystem, the 

desired values of the vehicle yaw rate and side 

slip angle are calculated based on current values 

of steering angle and vehicle velocity. The error 

values of side slip angle and yaw rate (eβ and er, 

respectively) are determined by the help of the 

supervisor. The supervisor contains threshold 

value triggers to prevent the working of the ILSC 

system when the error of side slip angle and yaw 

rate are small.  Using the error values of side slip 

angle and yaw rate, the corrective yaw moment is 

calculated and this corrective yaw moment acts 

on the vehicle through the braking torque 

distribution algorithm.The individual wheel slip 

controllers are used for individual wheel braking. 

In addition to the individual wheel braking 

intervention, electric motor torque reduction is 

applied when the individual braking is not 

enough to provide lateral stability of the vehicle. 

The details of these actuations and the 

subsystems are explained in the following 

sections[12]. 

3.3 Disturbance observer structure 

The disturbance observer is a well-known 

approach in the mechatronic systems control area 

that is used to achieve insensitivity to modeling 

error and disturbance rejection. It was introduced 

by [13] and further refined by [14]. It has been 

used successfully in a variety of mechatronics 

applications. For instance, friction compensation 

in [15], road vehicle yaw stability control in [16], 

robust atomic force microscope control in [17], 

power assisted electric bicycle control in [18], 

table drive system in [19] and hard-disc-drive 

servo system in [20]. In the disturbance observer 

approach, the inverse of the desired or nominal 

plant model is used to observe the disturbances 

and to cancel the effect of disturbances in the 

control signal. As a result, the closed system is 

forced to act like its nominal or desired model. 

The system structure with add-on disturbance 

observer is depicted in figure 7. 

Consider plant g with multiplicative uncertainty 

∆m and input disturbance d:   

y = g(u+d)                                                      (12) 

Where g = gn(1+∆m) and gn is the nominal model 

of the plant. The aim in the disturbance observer 

usage is to obtain 

  

 

FIGURE 7: system structure with add-on disturbance observer 
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y = gnun                                                                                             (13) 

Where un is the new control input. This aim can 

be achieved in disturbance observer design by 

treating the external disturbance and model 

uncertainty as an extended disturbance e and 

solving for it as 

𝑦 =  𝐺𝑛𝑢 + 𝐺𝑛𝑑 + 𝐺𝑛𝑢∆𝑚 + 𝐺𝑛𝑑∆𝑚 (14) 

𝑒 = 𝑦 − 𝐺𝑛𝑢 (15) 

And using the new control signal un given by  

𝑢 = 𝑢𝑛 −
1

𝐺𝑛
𝑒 = 𝑢𝑛 −

1

𝐺𝑛
𝑦 + 𝑢 (16) 

To approximately cancel its effect when 

substituted in (14). With the aim of not to 

overcompensate at high frequencies and to avoid 

stability robustness problems, the feedback 

signals in (16) are multiplied by the low pass 

filter q. In this case, the final equation becomes: 

𝑢 =  𝑢𝑛  − 𝑄 (
1

𝐺𝑛
(𝑦 + 𝑛) + 𝑢) (17) 

Where n represents the sensor noise, it is 

available for the case of real implementation. The 

disturbance observer can be designed both in 

continuous time and discrete time. For discrete 

time design, please refer to [17]. In discrete time 

implementation, if gn (z) is a minimum phase 

system, its inverse can directly be assigned, if not, 

stable version of g˜−n 1 (z) can be obtained using 

input shaping filter (ISF) designing techniques 

such as zero phase error tracking control 

(ZPETC), precision tracking control (PTC), 

optimal precision tracking control (OPTC). The 

loop gain of the disturbance observer 

compensated plant is 

𝐿 =
𝐺𝑄

𝐺𝑛(1 − 𝑄)
 (18) 

𝑦

𝑢𝑛
=

𝐺𝑛𝐺

𝐺𝑛(1 − 𝑄) + 𝐺𝑄
 (19) 

𝑦

𝑑
=

1

1 + 𝐿
=

𝐺𝑛(1 − 𝑄)

𝐺𝑛(1 − 𝑄) + 𝐺𝑄
 (20) 

𝑦

𝑛
=

−𝐿

1 + 𝐿
=

−𝐺𝑛𝑄

𝐺𝑛(1 − 𝑄) + 𝐺𝑄
 (21) 

It is seen that q must be a unity gain low pass 

filter. This choice will result in y/un → gn, y/d → 

0 at low frequencies where q → 1 and y/n → 0 at 

high frequencies where q → 0. 

There are limitations in the selection of the 

bandwidth of the q filter. First of all, the 

bandwidth of the q filter cannot exceed the 

bandwidth of the actuator used. Another 

limitation for the q filter arises from the robust 

stability requirement. The characteristic equation 

of the disturbance observer compensated system 

can be written 

gn (1−q)+gn (1+∆m)q = 0                               (22) 

gn (1+∆m)q = 0→𝑄 = −
1

∆𝑚
                          (23) 

and note that when the presence of ∆m does not 

change the number of unstable poles and zeros of 

g in comparison to those of gn, the application of 

the Nyquist stability criterion results in 

|𝑄| < |
1

∆𝑚
| , ∀𝜔                                                 (24) 

As the necessary and the sufficient condition for 

robust stability. The feedback controller c also 

affects the robust stability of the overall system. 

In the presence of the feedback control as shown 

in figure 7, the closed loop system, disturbance 

rejection and sensor noise rejection transfer 

functions can be written as 

𝑦

𝑟
=

𝐶𝐺𝑛𝐺

𝐺𝑛(1 − 𝑄) + 𝐺(𝐶𝐺𝑛 + 𝑄)
  (25) 

 

 

𝑦

𝑑
=

𝐺𝑛(1 − 𝑄)

𝐺𝑛(1 − 𝑄) + 𝐺(𝐶𝐺𝑛 + 𝑄)
 (26) 
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𝑦

𝑛
=

−𝐺(𝐶𝐺𝑛 + 𝑄)

𝐺𝑛(1 − 𝑄) + 𝐺(𝐶𝐺𝑛 + 𝑄)
 (27) 

In the case of feedback control, the characteristic 

equation of the closed loop system can be written 

by 

Gn (1−q)+gn (1+∆m)(cgn +q) = 0                     (28) 

Gn(1 + cgn + ∆M(Cgn + q)) =

0 →
cgn + q

cgn + 1
= −

1

∆m
 (29)

 

 

And using the nyquist stability criterion results in 

|
Cgn + q

cgn + 1
| < |

1

∆m
| , ∀𝜔 (30) 

 

As the necessary and the sufficient condition for 

robust stability including feedback control shown 

in figure 7. Thus, robust stability condition of the 

system can be investigated in the absence and 

presence of the feedback control using (24) and 

(30), respectively. 

3.4 Disturbance concept 

The structure of the communication disturbance 

observer is similar to the structure of the 

disturbance observer except the disturbance 

definition and time delay compensation. The time 

delayed system is rewritten using the network 

disturbance concept. The effect of the time delay 

can be expressed as shown in figure 8 where the 

time delay is seen as a disturbance that is acting 

on the system. 

 

FIGURE 8: network disturbance concept 

The network disturbance is defined as follows: 

D(t) = u(t)−u(t −1)                                         (31) 

Or in Laplace form 

D(s) =u (s)−u (s)e−ts                                       (32) 

Where u is the system input and t is the time 

delay. D(s) is called the network Disturbance. 

3.5 Robust stability analysis in the time delay 

For an uncertain system, the uncertain plant 

model g(s) can be represented using 

multiplicative uncertainty as follows: 

G(s) = gn (s)(1+∆m (s)), ∀ω                            (33) 

 

 

FIGURE 9. step responses of the time delayed 

integral plant for different delay values and for 

different cutoff frequencies ωc of q(s). 

Where gn(s) is the nominal model and g(s) 

denotes a family of models that deviate no more 

than the multiplicative uncertainty ∆m(s). 

A system with multiplicative uncertainty is 

depicted in figure 10. For this system, the loop 

transfer function is written as 

L = kg = kgn (1+∆m) = ln +ln∆m                        (34) 

Where, k is the controller and ln = kgn is the 

nominal loop transfer function. 

If we assume that the nominal closed loop system 

is stable, robust stability of the uncertain system 

can be guaranteed if l does not encircle the point 
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(−1,0) according to Nyquist stability criterion. 

Figure 11 depicts this robust stability condition. 

 

FIGURE 10: Feedback controlled plant with 

multiplicative uncertainty. 

 

FIGURE 11: Nyquist plot for illustrating robust 

stability condition 

This condition can be expressed as follows: 

|∆m (jω)ln (jω)| < |1+ln (jω)|, ∀ω                     (35) 

Or equivalently 

|
Δ𝑚(𝑗𝜔)𝐿𝑛(𝑗𝜔)

1 + 𝐿𝑛(𝑗𝜔)
| < 1, ∀𝜔 ⇔ ‖Δ𝑚𝑇𝑛‖∞ < 1 (36) 

 

Where tn is the nominal complementary 

sensitivity function control can be represented as 

𝐾 =
𝐶(1 − 𝑄)

1 + 𝐶𝐺𝑛𝑄
 (37) 

The nominal loop transfer function for the system 

is written as 

𝐿𝑛  =  𝐾𝐺𝑛𝑒
−𝑇𝑠  =

𝐶(1 − 𝑄)𝐺𝑛𝑒
−𝑇𝑠

1 + 𝐶𝐺𝑛𝑄
 (38) 

Using (38), the nominal complementary 

sensitivity function is given by 

𝑇𝑛 =
𝐿𝑛

1 + 𝐿𝑛
=

𝐶𝐺𝑛𝑒
−𝑇𝑠(1 − 𝑄)

1 + 𝐶𝐺𝑛𝑄 + 𝐶𝐺𝑛𝑒
−𝑇𝑠(1 − 𝑄)

 (39) 

As a result, the robust stability condition in (36) 

can be written for communication disturbance 

observer based controlled system as: 

|
𝐶𝐺𝑛𝑒−𝑇𝑠(1−𝑄)

1+𝐶𝐺𝑛𝑄+𝐶𝐺𝑛𝑒−𝑇𝑠(1−𝑄)
| |
1

∆m
| , ∀𝜔(40) 

To illustrate the effects of time delay, assume that 

e−ts is the only source of unmodeled dynamics. 

Thus, the multiplicative uncertainty model can be 

represented as 

∆m (s) = e−ts −1                                            (41) 

Consider the following time delayed basic 

integral plant for robust stability analysis: 

𝐺𝑝(𝑠) =
1

𝑠
𝑒−𝑡𝑠 (42) 

The nominal model 𝐺𝑛 is equal to 
1

𝑠
 . The time 

delay t is taken as 0.2 seconds. The controller 

C(s) is a proportional controller, set to 20 to 

ensure a short settling time and no overshoot, as 

per design requirements. The robust stability 

condition (40) is analyzed for different cut-off 

frequencies of q(s). It is observed that the 

uncertainty and robust stability lines intersect at 

ωc=10 rad/sec. At this frequency, the feedback-

controlled integral plant may become unstable. 

For other cut-off frequency values, the system 

remains stable. Increasing the cut-off frequency 

enhances the stability margin. However, in real 

applications, noise concerns may limit the 

selection of this frequency. 
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3.6 Robust PID steering control in parameter 

space for highly automated driving 

In recent years, intelligent vehicle systems and 

highly automated driving technologies have 

drawn interest among researchers. Many research 

efforts, including for example the work of [21, 

22], have concentrated on semi-autonomous and 

fully autonomous vehicles. Autonomous driving 

requires the coordinated automation of the 

longitudinal and lateral driving tasks of speed 

control and steering control, respectively. 

Desired path tracking of an autonomous vehicle 

requires the proper design and implementation of 

steering and speed controllers at the lower control 

level. This section concentrates on automated 

robust steering control. The basic automatic 

steering control algorithms found in the literature 

are based on proportional-type controllers [23]. 

In these designs, the lateral deviation of the 

vehicle at a preview distance is fed back for 

controlling the vehicle’s lateral dynamics. In 

[24], a robust PID controller is designed for 

automatic bus steering control as a solution to a 

benchmark problem. The yaw rate is measured in 

addition to lateral deviation measurements and is 

fed back to improve control system performance. 

For the same benchmark problem, a discrete-time 

add-on disturbance observer design is realized in 

[16]. Using the add-on disturbance observer, 

performance improvement is achieved without 

the need for yaw rate feedback. Another approach 

to automatic steering controllers is to design 

nested PI and PID controllers. A PI steering 

controller that reduces yaw rate tracking error is 

used to improve vehicle steering dynamics, and a 

PID controller is employed to reject lateral 

deviation from the desired path due to road 

curvature disturbances in [25]. In this section, the 

parameter space approach-based PID controller 

design is applied to robust automatic steering 

control, including considerations for electric 

power steering systems, which enhance steering 

responsiveness and efficiency. The theoretical 

background on the parameter space approach and 

an example of road vehicle yaw stability control 

can be found in references [9], [14], and [18]. The 

parameters exhibiting the largest variation in 

automatic steering control are taken as uncertain 

parameters, including vehicle mass, vehicle 

velocity, and tire-road friction coefficient. In this 

section, the controller parameter space is 

obtained by considering d-stability requirements 

for the two free coefficients of a PID controller, 

chosen as the proportional gain and the derivative 

gain . An overall solution region is calculated by 

intersecting solution regions for exemplary points 

chosen from the boundary of the uncertain range 

of parameters. Robust PID coefficients satisfying 

d-stability are chosen from the overall calculated 

parameter space regions. The designed controller 

is applied to an experimentally validated 

nonlinear dynamics simulation model of a sedan 

vehicle. 

Additionally, robust PID automatic steering 

control system design is realized based on the 

digital map and GPS measurements. In this 

structure, the lateral deviation from the desired 

path at the preview distance is calculated by 

comparing the generated map and the vehicle 

position in real time. High-resolution digital map 

generation using the constrained least square 

method is introduced. The proposed control 

system is tested with the validated nonlinear 

dynamics vehicle model on a specific eight-

segment desired path. The organization of the rest 

of this section is as follows: The nonlinear 

dynamics vehicle model used in the controller 

design and the experimental vehicle that it is 

based on are described. The nonlinear dynamics 

model of this experimental vehicle and model 

validation results are also presented. Robust PID 

controller design based on mapping d-stability 

boundaries into parameter space is given in the 

simulation section. 

 

3.7Vehicle models and model validation 

the vehicle steering behavior is modeled as single 

track model that also includes the dynamics of 

following the reference path as illustrated in 

figure 12. 
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Figure 12: Vehicle steering model 

The nonlinear dynamics vehicle steering 

model is described in state-space form as 

 

[
�̇�
�̇�
Δ�̇�
] = [

𝑎11 𝑎12 0 0
𝑎21 𝑎22 0 0
0 1 0 0

] [
𝛽
𝑟
Δ𝜓
]

+ [
𝑏11 0
𝑏21 0
0 −𝑉

] [
𝛿𝑓
𝜌𝑟𝑒𝑓

] (43)

 

Where β, r, v, ∆ψ, ls and y are vehicle side slip 

angle, vehicle yaw rate, vehicle velocity, yaw 

angle relative to the desired path’s tangent, the 

preview distance and lateral deviation from the 

desired path at the preview distance, respectively. 

The control input is the steering angle δf . Ρref = 

1/r is the road curvature where r is the road 

radius. The remaining terms are 

𝑎11 =
−(𝑐𝑟 + 𝑐𝑓)

�̌�𝑉
⁄  (43) 

𝑎12 =
1 + (𝑐𝑟𝑙𝑟 − 𝑐𝑓𝑙𝑓)

�̌�𝑉2
⁄  (44) 

𝑎21 =
(𝑐𝑟𝑙𝑟 − 𝑐𝑓𝑙𝑓)

𝐽
⁄  (45) 

𝑏11 =
𝑐𝑓
�̌�𝑉⁄  (46) 

𝑏12 =
𝑐𝑓𝑙𝑓

𝐽
⁄  (47) 

where �̌� = 𝑚 𝜇⁄  is the virtual mass, 𝐽 = 𝐽 𝜇⁄  is 

the virtual moment of inertia, µ is the tire-road 

friction coefficient, m is the vehicle mass, j is the 

moment of inertia, cf and cr are the cornering 

stiffnesses, lf is the distance from the center of 

gravity of the vehicle (cg) to the front axle and lr 

is the distance from the cg to the rear axle [26]. 

The values of the parameters used are j = 2392 

kgm2, lf = 1.07 m, lr = 1.53 m , ls = 2  

m, cf = 72463 n/rad and cr = 92492 n/rad. The 

vehicle mass, the vehicle velocity and the tire-

road friction coefficient are taken as uncertain 

parameters within the ranges of m ∈ [1400,1700] 

(kg) (the nominal value of mass is 1550 kg), µ ∈ 

[0.5,1],v ∈ [1,20] (m/s), respectively. The virtual 

mass, then, is within the range m .̌ The 

corresponding uncertainty box of virtual mass 

and vehicle speed is illustrated in figure 13. 

 

3.7.1 Nonlinear dynamics vehicle model 

The equations of motion for longitudinal and 

lateral dynamics of the nonlinear dynamics 

vehicle model are 

𝑚(𝑎𝑥 − 𝑟𝑉𝑦) = ∑ 𝐹𝑥𝑖𝑐𝑜𝑠𝛿𝑖 −

𝑖=𝑓,𝑟

𝐹𝑦𝑖𝑠𝑖𝑛𝛿𝑖

− (𝐹𝑎𝑒𝑟𝑜 + 𝐹𝑟𝑟 + 𝐹ℎ𝑐) 

(48) 

𝑚(𝑎𝑦 − 𝑟𝑉𝑥) = ∑ 𝐹𝑥𝑖𝑠𝑖𝑛𝛿𝑖 +

𝑖=𝑓,𝑟

𝐹𝑦𝑖𝑐𝑜𝑠𝛿𝑖 
(49) 

While the equation of motion around the yaw axis 

is 

f 

C

G f l r l 
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y 

V 
r F f F 

r V 

f V 

s l 

r 

Desired 
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V  
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Figure 13: uncertainty box 
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𝐼𝑧�̇� = 𝐼𝑓𝐹𝑦𝑓𝑐𝑜𝑠𝛿𝑓 − 𝐼𝑟𝐹𝑦𝑟𝑐𝑜𝑠𝛿𝑟
+𝐼𝑓𝐹𝑥𝑓𝑠𝑖𝑛𝛿𝑓 − 𝐼𝑟𝐹𝑥𝑓𝑠𝑖𝑛𝛿𝑟  (50)

 

and fyi are the longitudinal and the lateral tire 

forces. F and r represent the front and rear tires. 

Ax, ay, vx, vy and iz are the longitudinal acceleration 

at the cg, the lateral acceleration at the cg, the 

longitudinal velocity at the cg, the lateral velocity 

at the cg and the moment of inertia about the yaw 

axis, respectively. Note that the front wheel 

steered vehicle considered in this section so that 

the rear wheel steering angle is taken as zero (δr 

= 0) [27]. The resistive forces which affect the 

longitudinal dynamics of the vehicle are shown in 

figure 12. The aerodynamic drag force faero is 

given by 

𝐹𝑎𝑒𝑟𝑜 =
1

2
𝐴𝑝𝐶𝑑𝑉

2 (51) 

Where a is the effective frontal area of the 

vehicle, ρ is the mass density of air, cd is the drag 

coefficient, and v is the velocity of the vehicle. 

The rolling resistance force frr is determined as 

𝐹𝑟𝑟 = 𝐶𝑟𝑟𝑚𝑔𝑐𝑜𝑠(𝜃) (52) 

where crr is the rolling resistance coefficient and 

θ is the road inclination angle. The gravitational 

slope resistance force fhc is modeled as 

𝐹ℎ𝑐 = 𝑚𝑔𝑐𝑜𝑠(𝜃) (53) 

 

 

The internal combustion engine (ice) is modeled 

using a static engine map that defines the 

relationship between the inputs of throttle 

position α, the engine speed ω and the output 

engine torque tice(ω,α). The engine torque output 

is transmitted to the wheels through the driveline 

as torque td according to 

𝑇𝑑 = 𝜂𝑖𝑖𝑡𝑇𝑖𝑐𝑒(𝜔, 𝛼) (54) 

Where ηt is a static efficiency factor used to model 

mechanical losses and it is the transmission ratio. 

These parameters are used to model the 

transmission of the vehicle. The forces and 

torques acting on the wheel are shown in figure 

15 

 

FIGURE 15: forces and the torques acting on the 

wheel 

The moment balance at the center of the wheel is 

given by 

Iwω˙i = td −tbi −fxirw                                         (55) 

where iw is the moment of inertia of the wheel, ωi 

is the angular velocity of the ith wheel, tbi is the 

braking torque on the ith wheel applied through 

the brake system, fxi is the longitudinal tire force 

of the ith wheel and rw is the effective wheel 

radius. The longitudinal velocities of the front 

and rear wheels can be determined as follows: 

 

x i F 

aero F 

rr F 

mg 

hc F 

FIGURE 14: Resistive forces acting on the 

longitudinal dynamics of the vehicle 
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𝑉𝑓𝑥 = √𝑉𝑥
2 + (𝑉𝑦 + 𝑙𝑓𝑟)

2
𝑐𝑜𝑠𝛼𝑓                  (56) 

𝑉𝑟𝑥 = √𝑉𝑥
2 + (𝑉𝑦 − 𝑙𝑓𝑟)

2𝑐𝑜𝑠𝛼𝑟                    (57) 

Where the tire slip angles are 

𝛼𝑓 = 𝛿𝑓 − arctan(𝑡𝑎𝑛𝛽 +
𝑙𝑓𝑟

𝑉𝑥
)                   (58) 

𝛼𝑓 = 𝛿𝑓 − arctan(𝑡𝑎𝑛𝛽 +
𝑙𝑓𝑟

𝑉𝑥
) (59) 

The longitudinal wheel slip ratio is defined as 

𝑆𝑖

=

{
  
 

  
 
𝑅𝑤𝑤𝑖 − 𝑉𝑖𝑥

𝑉𝑖𝑥
, 𝑅𝑤𝑤𝑖 < 𝑉𝑖𝑥(braking)

𝑅𝑤𝑤𝑖 − 𝑉𝑖𝑥
𝑅𝑤𝑤𝑖

, 𝑅𝑤𝑤𝑖 ≥ 𝑉𝑖𝑥(traction);

 (i = f, r)
(60)

 

The Dugoff  Wheel model is used for the 

calculations of the tire forces as 

𝐹𝑥𝑖 = 𝑓𝑖𝐶𝑥𝑖𝑆𝑖 (61) 

𝐹𝑦𝑖 = 𝑓𝑖𝐶𝑦𝑖𝛼𝑖 (62) 

Where cxi and cyi are the longitudinal and the 

lateral cornering stiffness of the ith wheel. The 

coefficients fi are determined using 

𝑓𝑖 = {
1, 𝐹𝑅𝑖 <

𝜇𝐹𝑧𝑖
2

(2 −
𝜇𝐹𝑧𝑖
2𝐹𝑅𝑖

)
𝜇𝐹𝑧𝑖
2𝐹𝑅𝑖

, 𝐹𝑅𝑖 ≥
𝜇𝐹𝑧𝑖
2

   (63) 

𝐹𝑅𝑖 = √(𝐶𝑥𝑖𝑆𝑖)
2 + (𝐶𝑦𝑖𝛼𝑖)

2
   (64) 

3.8  Lateral deviation and yaw angle error 

calculations 

The desired trajectory for the robust steering 

control can be described by the generated digital 

map. The lateral deviation and yaw angle error of 

the vehicle for each segment can be found by 

comparing the desired trajectory (the generated 

map) and the vehicle position in real time. 

Assuming that the radius of the curvature for each 

segment is large compared to the lateral deviation 

of the vehicle, the shortest distance from the 

vehicle to the path is perpendicular with the path 

tangent. Using vectorial relation shown im figure 

16, the dot product between the vehicle’s position 

relative to the path and the slope of the map 

should be zero to obtain the shortest distance. 

This dot product can be written as follows: 

((𝑋(𝜆) − 𝑃𝐸), (𝑌(𝜆) − 𝑃𝑁)) (�̇�(𝜆), �̇�(𝜆)) = 0 (65) 

Where pe and pn denote the vehicle’s east and 

north position according to the map Coordinate 

system, respectively. 

 

FIGURE 16: lateral deviation and yaw angle error 

calculations 

If the polynomial used to define the map segment 

is nth order, this dot product polynomial is the 

order of 2n − 1. The dot product given in (59) is 

solved for the distance down the segment, λc, 

which corresponds to the point on the segment 

closest to the vehicle. Note that the problem given 

in (59) can be solved for λc by a polynomial root-

finding algorithm such as matlab’s fzero 

algorithm. Once λc is found, it is used to find the 

distance (the lateral deviation of the vehicle, h) 

between vehicle’s cg and the point on the path 

identified by λc. The lateral deviation of the 

vehicle, h can be calculated as follows: 
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ℎ = 𝜌√(𝑋 (𝜆𝑐) − 𝑃𝐸)2 + (𝑌 (𝜆𝑐) − 𝑃𝑁)2 (66) 

Where: 

𝜌 = sgn (�⃗⃗� (3)) (67) 

�⃗⃗� = ((𝑋(𝜆𝑐) − 𝑃𝐸), (𝑌(𝜆𝑐) − 𝑃𝑁), 0)

× (�̇�(𝜆𝑐), �̇�(𝜆𝑐), 0) (68)
 

The ρ is used to determine sign of the lateral 

deviation of h. It is calculated based on the cross 

product of the vectors between the vehicle’s 

position relative to the path and the slope of the 

map. The third dimension of this product gives 

the direction information of the lateral deviation, 

h. If h is positive, it means the vehicle is outer of 

a closed map and if h is negative, the vehicle is 

inner of a closed map. 

Similarly, the yaw angle of the vehicle can be 

calculated comparing the yaw angle of the 

vehicle and the slope of the path at the point λc. 

∆𝜓 = 𝜓 −
�̇�(𝜆𝑐)

�̇�(𝜆𝑐)
 (69) 

As a result, using the h and ∆ψ, the lateral 

deviation y at the preview distance ls is calculated 

and this signal is feedback to the controller to 

maintain robust steering control. The segment 

switching is also a problem to be solved in this 

approach. In order to determine when the vehicle 

switches the segment, an added algorithm checks 

the distance between the vehicle and the 

upcoming segment’s boundary, if the distance is 

lower than a predefined distance (for example 1 

m), it is assumed that the vehicle switched the 

segment. Also, it is assumed that the vehicle is 

always moving forward to maintain consistency. 

4.Simulation results 

The simulation study is performed to test the 

digital map and gps measurements based robust 

pid steering controller for highly automated 

driving. In the simulation, the vehicle mass and 

the tire-road friction coefficient are taken as 1500 

kg and 1, respectively. The vehicle tries to follow 

the eight segments desired map with the constant 

velocity of 15 m/s. The lateral deviation (h) and 

the yaw angle error (∆ψ) are calculated following 

the procedure given in lateral deviation and yaw 

angle error calculations. After the determination 

of h and ∆ψ, the lateral deviation y at the preview 

distance ls is calculated using these variables. 

Then, y is used in the feedback controller. Figure 

17 shows the desired map and the stroboscopic 

vehicle trajectory. The vehicle starts its 

movement from the point (430 m, 240 m) near the 

segment 1 with 45 degrees initial yaw angle. 

Firstly the vehicle moves to compensate the 

distance difference from the segment 1 and then 

tracks the segment 1 and the upcoming segments 

successfully. 

 

FIGURE 17: Desired map and stroboscopic 

vehicle trajectory 

Figure 18 shows the changes of the segments, the 

lateral deviation y from the desired path at the 

preview distance, vehicle velocity v and the 

vehicle yaw rate r in the simulation. The vehicle 

tracks the segments from one to eight. It is seen 

that the lateral deviation at the preview distance 

is around zero after the settling of the vehicle to 

the segment 1. The velocity of the vehicle is kept 

constant at 15 m/s along the path successfully by 

the pi-based cruise controller. Also, the vehicle 

yaw rate is at acceptable values during the 

simulation. 
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5.Conclusions 

 A parameter-space-based Robust PID steering 

controller design for automated steering was 

developed and tested in a simulation environment 

in this section. The vehicle mass, vehicle 

velocity, and tire-road friction coefficient were 

taken as uncertain parameters in the parameter 

space design. A validated nonlinear dynamics   

model of a mid-sized sedan was used in the 

simulations.  In the simulations, the vehicle with 

uncertain parameters successfully followed 

different road curvatures with constant and time-

varying tire-road friction coefficients. Electric 

power steering, a critical component for 

improving steering responsiveness, was 

integrated into the simulations to evaluate its 

interaction with the proposed controllers. 

Also, Robust PID steering control was performed 

based on digital map and GPS measurements in 

this section. This control structure incorporated 

Disturbance Rejection to ensure that lateral 

deviation and yaw angle errors were minimized, 

thereby improving vehicle tracking accuracy. By 

comparing the desired trajectory and the vehicle 

position in real time, the system achieved 

enhanced Noise Suppression. The desired 

trajectory (the digital map) was calculated using 

the constrained least squares method. An eight-

segment high-resolution digital map was tracked 

by the validated nonlinear dynamics vehicle 

model with a high degree of accuracy, 

demonstrating the effectiveness of Robust 

Control methods. 

The ILSC and RB-LSC systems were presented 

in this section to improve the lateral stability of a 

fully electric vehicle. The effectiveness of the 

proposed control systems was verified through 

realistic CarSim simulations using a validated 

model of a fully electric light vehicle, which 

incorporated electric power steering for enhanced 

maneuverability. Several simulation studies were 

conducted, including a sine-with-dwell maneuver 

and a fishhook test to evaluate the proposed 

systems. According to these simulations, the

 

 

FIGURE 18 changes of important variables 
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lateral stability of the electric vehicle was 

significantly improved by using the ILSC system. 

The results showed superior performance in 

terms of yaw rate and side-slip angle compared to 

the basic ESC system. Robust Control strategies 

were applied to stabilize unstable vehicle 

behavior using simpler RB-LSC approaches, 

which, despite their relatively lower performance 

compared to ILSC, offered a cost-effective means 

of achieving stability. 

This research discusses advanced control 

methods for ground vehicles, emphasizing 

Robust Control, Disturbance Rejection, and 

Noise Suppression as essential features in control 

system design. The parameter-space-based 

Robust Control methodology was applied to DC 

motor speed control, showcasing improved 

tracking and Disturbance Rejection through the 

use of an add-on disturbance observer. The 

designed system demonstrated enhanced Noise 

Suppression, ensuring stable performance across 

various disturbances. Three different 

experiments—trajectory tracking, step 

Disturbance Rejection, and ramp Disturbance 

Rejection—highlighted the system's superior 

robustness. 

A novel robust stability condition for handling 

constant and time-varying delays was 

established, enhancing Disturbance Rejection 

capabilities. This condition was applied to the 

vehicle yaw stability control problem over CAN 

bus networks, where network-induced delays 

could compromise system performance. Using 

electric power steering and the proposed 

communication Disturbance Observer, time-

varying delay issues were mitigated, ensuring 

robust yaw stability control and improved 

tracking performance. Robust Control was 

further demonstrated through the integration of 

these advanced methodologies in automatic 

steering systems for autonomous vehicles, 

employing digital maps and real-time GPS data. 

In addition to automated steering control, robust 

lateral stability control was examined for fully 

electric vehicles. Two novel control systems were 

proposed to maintain the desired vehicle side-slip 

angle and yaw rate, ensuring optimal lateral 

stability. The integration of electric power 

steering and Disturbance Rejection mechanisms 

allowed for precise maneuvering and Noise 

Suppression during critical driving scenarios. 

Simulation tests, including sine-with-dwell and 

fishhook maneuvers, confirmed the efficacy of 

these systems. Future extensions to this work 

include applying fractional-order filters for 

improved Noise Suppression, enhancing the 

robustness of Disturbance Observer designs, and 

exploring the use of Robust H∞ control methods 

for fully electric vehicle stability control. 
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