Lecture 19 Singular Value Decomposition

- Singular value decomposition
- 2 by 2 case
- SVD Theorem
- Similar matrices
- Jordan form

Singular value decomposition

Suppose $A \in \mathbf{R}^{m \times n}$ with $\operatorname{rank}(A)=r$. The singular value decomposition (SVD) of A is to

- choose orthogonal basis v_{1}, \cdots, v_{r} of row space of A, and
- choose orthogonal basis u_{1}, \cdots, u_{r} of column space of A
- so that $A v_{i}=\sigma_{i} u_{i}, \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$

In matrix form the equations $A v_{i}=\sigma_{i} u_{i}$ become $A V=U \Sigma$.
The matrix A can be written as

$$
A=U \Sigma V^{T}
$$

where $U \in \mathbf{R}^{m \times r}$ and $V \in \mathbf{R}^{n \times r}$ have orthonormal columns.

Application example

Singular value decomposition has many applications in signal processing and control. We consider an example of image compression.

- a (black and white) digital image is a matrix of pixel values
- each pixel contains the grey level
- each picture may have 512 pixels in each row and 256 pixels in each column, a 256 by 512 matrix
- usually in applications large amount of images need to be stored and processed
- compression needed to reduce data to manageable size without losing picture quality

Low rank approximation

Suppose $A \in \mathbf{R}^{256 \times 512}$ is a digital image and we have SVD for A as

$$
A=U \Sigma V^{T}
$$

Basic idea:

- $\hat{A}_{1}=\sigma_{1} u_{1} v_{1}^{T}$ gives the best rank 1 approximation to A
- compression ratio: $\frac{(256)(512)}{(1+256+512)}$, roughly $170: 1$
- $\hat{A}_{k}=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{T}$ is the best rank k approximation to A

Let approximation error $E=A-\hat{A}_{k}$. The approximation is best in the sense that $\sum_{i} \sum_{j}\left|e_{i j}\right|^{2}$ is minimized.

2 by 2 case

We will consider $A \in \mathbf{R}^{2 \times 2}$ with rank $r=2$, so A is invertible.
The row space $\mathcal{C}\left(A^{T}\right)=\mathbf{R}^{2}$ and column space $\mathcal{C}(A)=\mathbf{R}^{2}$.
We need

- v_{1} and v_{2} orthonormal
- $A v_{1}$ and $A v_{2}$ are perpendicular
- $u_{1}=A v_{1} /\left\|A v_{1}\right\|$ and $u_{2}=A v_{2} /\left\|A v_{2}\right\|$

We want to diagonalize A but can not use eigenvectors: A may not be symmetric so eigenvectors are not orthogonal and eigenvalues may not be real.

2 by 2 case

Putting together, with $\left\|A v_{1}\right\|=\sigma_{1}$ and $\left\|A v_{2}\right\|=\sigma_{2}$,

$$
A\left[\begin{array}{ll}
v_{1} & v_{2}
\end{array}\right]=\left[\begin{array}{ll}
\sigma_{1} u_{1} & \sigma_{2} u_{2}
\end{array}\right]=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right] .
$$

In matrix form

$$
A V=U \Sigma \Leftrightarrow U^{-1} A V=\Sigma \Leftrightarrow U^{T} A V=\Sigma .
$$

- diagonal matrix Σ contains the singular values σ_{1} and σ_{2}
- columns of U form an orthogonal basis for $\mathcal{C}(A)$
- columns of V form an orthogonal basis for $\mathcal{C}\left(A^{T}\right)$ $\left(A^{T} U=V \Sigma\right)$

Singular vectors

The singular vectors v_{1} and v_{2} are the eigenvectors of $A^{T} A$ with eigenvalues σ_{1}^{2} and σ_{2}^{2} :

$$
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{T} \Sigma V^{T}=V\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right] V^{T}
$$

The singular vectors u_{1} and u_{2} are the eigenvectors of $A A^{T}$ with eigenvalues σ_{1}^{2} and σ_{2}^{2} :

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma^{T} \Sigma U^{T}=U\left[\begin{array}{cc}
\sigma_{1}^{2} & 0 \\
0 & \sigma_{2}^{2}
\end{array}\right] U^{T}
$$

SVD Theorem (2 by 2 case)

Theorem: The singular value decomposition of $A \in \mathbf{R}^{2 \times 2}$ with rank $(A)=2$ has orthogonal matrices U and V so that

$$
A V=U \Sigma \Leftrightarrow A=U \Sigma V^{-1}=U \Sigma V^{T}
$$

where $\Sigma=\left[\begin{array}{cc}\sigma_{1} & 0 \\ 0 & \sigma_{2}\end{array}\right]$ contains the singular values $\sigma_{1}>0$ and $\sigma_{2}>0$.

Find singular value decomposition of $A=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right]$.

- $A^{T} A=\left[\begin{array}{ll}5 & 3 \\ 3 & 5\end{array}\right]$
- eigenvalues $\sigma_{1}^{2}=8$ and $\sigma_{2}^{2}=2$
- unit eigenvectors $v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right], v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$
- $A v_{1}=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]=2 \sqrt{2}\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- $A v_{2}=\left[\begin{array}{cc}2 & 2 \\ -1 & 1\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]=\sqrt{2}\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- $A=U \Sigma V^{T}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}2 \sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right]\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ -1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$

Interpretation of $A=U \Sigma V^{T}$

Consider the relation $y=A x$.
By SVD we decompose the action of A into three simple steps: rotation, scaling and rotation:

- rotate (or reflection) by V^{T}
- scale along the axes
- rotate by U

The action of A is to transform the unit circle to an ellipse.

Interpretation of $A=U \Sigma V^{T}$

Figure 6.5 U and V are rotations and reflections. Σ is a stretching matrix.

Example

Find singular value decomposition of $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right]$.

- $\operatorname{rank}(A)=1$
- basis for row space $v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- basis for column space $u_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- $A v_{1}=\sqrt{2}\left[\begin{array}{l}2 \\ 1\end{array}\right]=\sigma_{1} u_{1}$, so $\sigma_{1}=\sqrt{10}$
- SVD: $A=\sigma_{1} u_{1} v_{1}^{T}$

Example

It is customary to make U and V square. The matrices need a second column.

- v_{2} is perpendicular to v_{1} so choose $v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}1 \\ -1\end{array}\right]$
- u_{2} is perpendicular to u_{1} so choose $u_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}1 \\ -2\end{array}\right]$
- v_{2} is in $\mathcal{N}(A)$ so $A v_{2}=0$, so $\sigma_{2}=0$
- u_{2} is in $\mathcal{N}\left(A^{T}\right)$
- SVD:

$$
A=U \Sigma V^{T}=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
2 & 1 \\
1 & -2
\end{array}\right]\left[\begin{array}{cc}
\sqrt{10} & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]
$$

Example

Figure 6.6 The SVD chooses orthonormal bases for 4 subspaces so that $A \boldsymbol{v}_{i}=\sigma_{i} \boldsymbol{u}_{i}$.

SVD Theorem

Theorem: The singular value decomposition of $A \in \mathbf{R}^{m \times n}$, $\operatorname{rank}(A)=r$, has orthogonal matrices U and V so that

$$
A V=U \Sigma \Leftrightarrow A=U \Sigma V^{T}=U_{1} \Sigma_{1} V_{1}^{T}
$$

- $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right] \in \mathbf{R}^{m \times m}, U_{1} \in \mathbf{R}^{m \times r}$
- $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right] \in \mathbf{R}^{n \times n}, V_{1} \in \mathbf{R}^{n \times r}$
- $\Sigma \in \mathbf{R}^{m \times n}$ has the form $\left[\begin{array}{cc}\Sigma_{1} & 0_{r \times(n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]$ and

$$
\Sigma_{1}=\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right], \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

Orthogonal bases for the 4 spaces

In the SVD $A=U \Sigma V^{T}$, the orthogonal matrices U and V contain orthonormal bases for the four spaces associated with A.

- columns of V_{1} is an orthonormal basis for $\mathcal{C}\left(A^{T}\right)$
- columns of V_{2} is an orthonormal basis for $\mathcal{N}(A)$
- columns of U_{1} is an orthonormal basis for $\mathcal{C}(A)$
- columns of U_{2} is an orthonormal basis for $\mathcal{N}\left(A^{T}\right)$

Proof of SVD Theorem

We have

- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right)=r$
- $A^{T} A$ has r positive eigenvalues $\sigma_{1}^{2}, \cdots, \sigma_{r}^{2}$
- singular values $\sigma_{1}, \cdots, \sigma_{r}$ are defined

From the equation

$$
\begin{equation*}
A^{T} A v_{i}=\sigma_{i}^{2} v_{i} \tag{1}
\end{equation*}
$$

- orthonormal vectors v_{1}, \cdots, v_{r} and thus V_{1} are defined
- they gives a basis for the row space $\mathcal{C}\left(A^{T}\right)$

Choose orthonormal v_{r+1}, \cdots, v_{n} as a basis for $\mathcal{N}(A)$.
Thus V_{2} and V are defined.

Proof of SVD Theorem

From (1),

- $v_{i}^{T} A^{T} A v_{i}=\sigma_{i}^{2} v_{i}^{T} v_{i} \Rightarrow\left\|A v_{i}\right\|=\sigma_{i}$
- $A A^{T} A v_{i}=\sigma_{i}^{2} A v_{i}$
- $u_{i}=A v_{i} / \sigma_{i}, i=1, \cdots, r$ are orthonormal eigenvectors of $A A^{T}$ and they form a basis of $\mathcal{C}(A), U_{1}$ is defined
- $A v_{i}=\sigma_{i} u_{i}, i=1, \cdots, r$

Choose orthonormal u_{r+1}, \cdots, u_{m} as a basis for $\mathcal{N}(A)$, which defines U_{2}.

Similar matrices

Suppose M is an invertible matrix and $B=M^{-1} A M$.

- we say B is similar to A
- if B is similar to A, then A is similar to B
- in differential equations, the expression $M^{-1} A M$ appears when we change variables: consider $\frac{d x}{d t}=A x$ and let $x=M z$, then

$$
M \frac{d z}{d t}=A M z \Leftrightarrow \frac{d z}{d t}=M^{-1} A M z
$$

Invariance of eigenvalues

Fact: Suppose A and B are similar, and $B=M^{-1} A M$. Then (a) A and B have the same eigenvalues and (b) v is an eigenvector of A implies $M^{-1} v$ is an eigenvector of B.

Proof: (a) We have

$$
\operatorname{det}(\lambda I-B)=\operatorname{det}\left(M^{-1}\right) \operatorname{det}(\lambda I-A) \operatorname{det}(M)=\operatorname{det}(\lambda I-A)
$$

(b) Write $A=M B M^{-1}$, then

$$
A v=\lambda v \Leftrightarrow M B M^{-1} v=\lambda v \Leftrightarrow B\left(M^{-1} v\right)=\lambda\left(M^{-1} v\right) .
$$

This shows that λ is an eigenvalue of B with eigenvector $M^{-1} v$.

Example

Consider the projection matrix $A=\left[\begin{array}{ll}0.5 & 0.5 \\ 0.5 & 0.5\end{array}\right]$.

- the eigenvalues are 1 and 0 .
- A is similar to $\Lambda=S^{-1} A S=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
- choose $M=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right], M^{-1} A M=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$
- choose $M=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right], M^{-1} A M=\left[\begin{array}{rr}0.5 & -0.5 \\ -0.5 & 0.5\end{array}\right]$
- every 2 by 2 matrix with eigenvalues 1 and 0 is similar to A

Example

The matrix $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is similar to any nonzero B of the form

$$
B=\left[\begin{array}{rr}
c d & d^{2} \\
-c^{2} & -c d
\end{array}\right] .
$$

- eigenvalues of A are 0 and 0
- $\operatorname{rank}(A)=1$
- $\operatorname{det}(B)=0, \operatorname{rank}(B)=1$, trace $(B)=0$.
- B can not be diagonalized
- A is the Jordan form of B
- $B=M^{-1} A M$ where $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c=1$

Similarity transformation

The formula $B=M^{-1} A M$ is called a similarity transformation from A to B.

In the transformation, some things changed and some don't.

Not changed	Changed
eigenvalues	eigenvectors
trace and determinant	nullspace
rank	column space
$\#$ of indep. eigenvectors	row space
Jordan form	left nullspace
	singular values

Example

Consider the Jordan matrix $J=\left[\begin{array}{ccc}5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5\end{array}\right]$.

- $J-5 I=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$ has rank 2
- eigenvalues 5,5,5 (algebraic multiplicity=3)
- one indep. eigenvector (geometric multiplcity=1)
- $B=M^{-1} J M$ has eigenvalues $5,5,5$ and $\operatorname{rank}(B-5 I)=2$.
- $\operatorname{dim}(\mathcal{N}(B-5 I))=1$ (one indep. eigenvector)

Example

- J^{T} is similar to J with $M=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
- J is similar to every matrix A with eigenvalues $5,5,5$ and one (independent) eigenvector, i.e., there is an M such that

$$
M^{-1} A M=J
$$

(this follows from the Jordan Form Theorem)

Example

Consider the differential equation

$$
\frac{d x}{d t}=J x=\left[\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \Leftrightarrow \begin{aligned}
& \frac{d x_{1}}{d t}=5 x_{1}+x_{2} \\
& \frac{d x_{2}}{d t}
\end{aligned}=5 x_{2}+x_{3}
$$

This is a triangular system and can be solved sequentially from the last equation.

$$
\begin{array}{ll}
\frac{d x_{3}}{d t}=5 x_{3} & \Rightarrow x_{3}(t)=x_{3}(0) e^{5 t} \\
\frac{d x_{2}}{d t}=5 x_{2}+x_{3} & \Rightarrow x_{2}(t)=\left(x_{2}(0)+t x_{3}(0)\right) e^{5 t} \\
\frac{d x_{1}}{d t}=5 x_{1}+x_{2} & \Rightarrow x_{1}(t)=\left(x_{1}(0)+t x_{2}(0)+\frac{1}{2} t^{2} x_{3}(0)\right) e^{5 t}
\end{array}
$$

Remark: Generalization to Jordan matrix of size n is obvious.

Jordan form

For every $A \in \mathbf{R}^{n \times n}$ we want to choose M so that $M^{-1} A M$ is as nearly diagonal as possible.

When A has n independent eigenvectors, $M=S$ and $M^{-1} A M=\Lambda$ is the Jordan form of A

In general, suppose A has s independent eigenvectors.

- A is similar to a matrix with s blocks
- each block is a Jordan matrix (called a Jordan block): the eigenvalues on the diagonal and the diagonal above it contains 1's
- each block accounts for an eigenvector of A

Jordan Form Theorem

If A has s independent eigenvectors, then it is similar to a matrix J that has s Jordan blocks on its diagonal: There is a matrix M such that

$$
M^{-1} A M=\left[\begin{array}{ccc}
J_{1} & & \\
& \ddots & \\
& & J_{s}
\end{array}\right]=J
$$

Each block in J has one eigenvalue λ_{i}, one eigenvector, and 1's above the diagonal:

$$
\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \cdot & \cdot & \\
& & \cdot & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

Jordan form

Corollary: If A and B share the same Jordan form, then they are similar
To see this:

$$
\begin{aligned}
& M_{A}^{-1} A M_{A}=J=M_{B}^{-1} B M_{B} \\
& \Rightarrow M_{B} M_{A}^{-1} A M_{A} M_{B}^{-1}=B .
\end{aligned}
$$

Note

- $A^{k}=M^{-1} J^{k} M$
- $e^{A t}=M^{-1} e^{J t} M$
- J^{k} and $e^{J t}$ are easy to compute

Remark: Numerical computation of M and J is not stable: a slight change in A will separate the repeated eigenvalues.

