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Preface

Because of its emphasis on basic concepts and fundamental principles, Continuum
Mechanics has an important role in modern engineering and technology. Several under-
graduate courses which utilize the continuum concept and its dependent theories in the
training of engineers and scientists are well established in today’s curricula and their
number continues to grow. Graduate programs in Mechanics and associated areas have
long recognized the value of a substantial exposure to the subject. This book has been
written in an attempt to assist both undergraduate and first year graduate students in
understanding the fundamental principles of continuum theory. By including a number of
solved problems in each chapter of the book, it is further hoped that the student will be
able to develop his gkill in solving problems in both continuum theory and its related fields
of application.

In the arrangement and development of the subject matter a sufficient degree of con-
tinuity is provided so that the book may be suitable as a text for an introductory course in
Continuum Mechanics. Otherwise, the book should prove especially useful as a supple-
mentary reference for a number of courses for which continuum methods provide the basic
structure. Thus courses in the areas of Strength of Materials, Fluid Mechanics, Elasticity,
Plasticity and Viscoelasticity relate closely to the substance of the book and may very well
draw upon its contents.

Throughout most of the book the important equations and fundamental relationships
are presented in both the indicial or “tensor” notation and the classical symbolic or ‘“vector”
notation. This affords the student the opportunity to compare equivalent expressions and
to gain some familiarity with each notation. Only Cartesian tensors are employed in the
text because it is intended as an introductory volume and since the essence of much of the
theory can be achieved in this context.

The work is essentially divided into two parts. The first five chapters deal with the
basic continuum theory while the final four chapters cover certain portions of specific
areas of application. Following an initial chapter on the mathematics relevant to the
study, the theory portion contains additional chapters on the Analysis of Stress, Deforma-
tion and Strain, Motion and Flow, and Fundamental Continuum Laws. Applications are
treated in the final four chapters on Elasticity, Fluids, Plasticity and Viscoelasticity. At
the end of each chapter a collection of solved problems together with several exercises for
the student serve to illustrate and reinforce the ideas presented in the text.

The author acknowledges his indebtedness to many persons and wishes to express his
gratitude to all for their help. Special thanks are due the following: to my colleagues,
Professors W. A. Bradley, L. E. Malvern, D. H. Y. Yen, J. F. Foss and G. LaPalm each of
whom read various chapters of the text and made valuable suggestions for improvement;
to Professor D. J. Montgomery for his support and assistance in a great many ways; to
Dr. Richard Hartung of the Lockheed Research Laboratory, Palo Alto, California, who
read the preliminary version of the manuscript and gave numerous helpful suggestions; to
Professor M. C. Stippes, University of Illinois, for his invaluable comments and suggestions;
to Mrs. Thelma Liszewski for the care and patience she displayed in typing the manuscript;
to Mr. Daniel Schaum and Mr. Nicola Monti for their continuing interest and guidance
throughout the work. The author also wishes to express thanks to his wife and children
for their encouragement during the writing of the book.

Michigan State University GEORGE E. MASE
June 1970
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Chapter 1

Mathematical Foundations

1.1 TENSORS AND CONTINUUM MECHANICS

Continuum mechanics deals with physical quantities which are independent of any
particular coordinate system that may be used to describe them. At the same time, these
physical quantities are very often specified most conveniently by referring to an appropriate
system of coordinates. Mathematically, such quantities are represented by tensors.

As a mathematical entity, a tensor has an existence independent of any coordinate
system. Yet it may be specified in a particular coordinate system by a certain set of
quantities, known as its components. Specifying the components of a tensor in one
coordinate system determines the components in any other system. Indeed, the law of
transformation of the components of a tensor is used here as a means for defining the
tensor. Precise statements of the definitions of various kinds of tensors are given at the
point of their introduction in the material that follows.

The physical laws of continuum mechanics are expressed by tensor equations. Because
tensor transformations are linear and homogeneous, such tensor equations, if they are valid
in one coordinate system, are valid in any other coordinate system. This invariance of
tensor equations under a coordinate transformation is one of the principal reasons for the
usefulness of tensor methods in continuum mechanics.

12 GENERAL TENSORS. CARTESIAN TENSORS. TENSOR RANK.

In dealing with general coordinate transformations between arbitrary curvilinear
coordinate systems, the tensors defined are known as general tensors. When attention is
restricted to transformations from one homogeneous coordinate system to another, the
tensors involved are referred to as Cartesian tensors. Since much of the theory of con-
tinuum mechanics may be developed in terms of Cartesian tensors, the word “tensor” in
this book means “Cartesian tensor” unless specifically stated otherwise.

Tensors may be classified by rank, or order, according to the particular form of the
transformation law they obey. This same classification is also reflected in the number of
components a given tensor possesses in an n-dimensional space. Thus in a three-dimensional
Euclidean space such as ordinary physical space, the number of components of a tensor is
3N, where N is the order of the tensor. Accordingly a tensor of order zero is specified in
any coordinate system in three-dimensional space by one component. Tensors of order
zero are called scalars. Physical quantities having magnitude only are represented by
scalars. Tensors of order one have three coordinate components in physical space and are
known as vectors. Quantities possessing both magnitude and direction are represented by
vectors. Second-order tensors correspond to dyadics. Several important quantities in con-
tinuum mechanics are represented by tensors of rank two. Higher order tensors such as
triadics, or tensors of order three, and tetradics, or tensors of order four are also defined
and appear often in the mathematics of continuum mechanics.
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13 VECTORS AND SCALARS

Certain physical quantities, such as force and velocity, which possess both magnitude
and direction, may be represented in a three-dimensional space by directed line segments
that obey the parallelogram law of addition. Such directed line segments are the geometrical
representations of first-order tensors and are called vectors. Pictorially, a vector is simply
an arrow pointing in the appropriate direction and having a length propertional to the mag-
nitude of the vector. FEqual vectors have the same direction and equal magnitudes. A wunit
vector is a vector of unit length. The null or zero vector is one having zero length and an
unspecified direction. The negative of a vector is that vector having the same magnitude
but opposite direction.

Those physical quantities, such as mass and energy, which possess magnitude only are
represented by tensors of order zero which are called scalars.

In the symbolic, or Gibbs notation, vectors are designated by bold-faced letters such as
a, b, etc. Scalars are denoted by italic letters such as a,b, A, ete. Unit vectors are further
distinguished by a caret placed over the bold-faced letter. In Fig. 1-1, arbitrary vectors a
and b are shown along with the unit vector € and the pair of equal vectors ¢ and d.

N T S

Fig.1-1

The magnitude of an arbitrary vector a is written simply as @, or for emphasis it may
be denoted by the vector symbol between vertical bars as |a.

1.4 VECTOR ADDITION. MULTIPLICATION OF A VECTOR BY A SCALAR

Vector addition obeys the parallelogram law, which defines the vector sum of two vectors
as the diagonal of a parallelogram having the component vectors as adjacent sides. This
law for vector addition is equivalent to the triangle rule which defines the sum of two vectors
as the vector extending from the tail of the first to the head of the second when the summed
vectors are adjoined head to tail. The graphical construction for the addition of a and b
by the parallelogram law is shown in Fig. 1-2(e). Algebraically, the addition process is
expressed by the vector equation

a+b=b+a=c (1.1)

Vector subtraction is accomplished by addition of the negative vector as shown, for
example, in Fig. 1-2(b) where the triangle rule is used. Thus
a—b=-b+a=4d (1.2)

The operations of vector addition and subtraction are commutative and associative as
illustrated in Fig. 1-2(c), for which the appropriate equations are

(a+b)+g =a+(b+g) = h (1.8)

h

(@) (®) (e)
Fig.1-2
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Multiplication of a vector by a scalar produces in general a new vector having the same
direction as the original but a different length. Exceptions are multiplication by zero to
produce the null vector, and multiplication by unity which does not change a vector. Multi-
plication of the vector b by the scalar m results in one of the three possible cases shown in
Fig. 1-3, depending upon the numerical value of m.

mb b b
mb
b
mb
m > 1 0<m<1 m<0
Fig.1-3

Multiplication of a vector by a scalar is associative and distributive. Thus

m(nb) = (mn)b = n(mb) (1.4)
(m+n)b = (n+m)b = mb+ nb (1.5)
m(a+b) = m(b+a) = ma+ mb (1.6)

In the important case of a vector multiplied by the reciprocal of its magnitude, the
result is a unit vector in the direction of the original vector. This relationship is expressed

by the equation -
b = b/b (1.7)

1.5 DOT AND CROSS PRODUCTS OF VECTORS

The dot or scalar product of two vectors a and b is the scalar
A= ab = b-a = abcos¥ (1.8)

in which 6 is the smaller angle between the two vectors as shown in Fig. 1-4(a¢). The dot
product of a with a unit vector & gives the projection of a in the direction of e.

Fig.1-4

The cross or vector product of a into b is the vector v given by
v = aXxb = —bXa = (absing)e (1.9)

in which ¢ is the angle less than 180° between the vectors a and b, and € is a unit vector
perpendicular to their plane such that a right-handed rotation about € through the angle
6 carries a into b. The magnitude of v is equal to the area of the parallelogram having
aand b as adjacent sides, shown shaded in Fig. 1-4(b). The cross product is not commutative.
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The scalar triple product is a dot product of two vectors, one of which is a cross product.
a:(bXc) = (axb)ec = a:bxec)= A (1.10)

As indicated by (1.10) the dot and cross operation may be interchanged in this product.
Also, since the cross operation must be carried out first, the parentheses are unnecessary
and may be deleted as shown. This product is sometimes written [abc] and called the box
product. The magnitude A of the scalar triple product is equal to the volume of the
parallelepiped having a, b, ¢ as coterminous edges.

The wvector triple product is a cross product of two vectors, one of which is itself a
cross product. The following identity is frequently useful in expressing the product of a

crossed into b X ¢.
ax(bXe) = (a*c)b— (a*b)c = w (1.11)

From (1.11), the product vector w is observed to lie in the plane of b and c.

16 DYADS AND DYADICS

The indeterminate vector product of a and b, defined by writing the vectors in juxtaposi-
tion as ab is called a dyad. The indeterminate product is not in general commutative, i.e.
ab = ba. The first vector in a dyad is known as the antecedent, the second is called the
consequent. A dyadic D corresponds to a tensor of order two and may always be represented

as a finite sum of dyads
D = ab; + asby + - -- + anby (1.12)

which is, however, never unique. In symbolic notation, dyadics are denoted by bold-faced
sans-serif letters as above.

If in each dyad of (1.12) the antecedents and consequents are interchanged, the resulting
dyadic is called the conjugate dyadic of D and is written

D. = bia; + bsaz + - -+ + byan (1.13)

If each dyad of D in (1.12) is replaced by the dot product of the two vectors, the result is a
scalar known as the scalar of the dyadic D and is written

Di: = air*b: + ax*by + --- + anby (1.14)

If each dyad of D in (1.12) is replaced by the cross product of the two vectors, the result is
called the vector of the dyadic D and is written

D, = ayXbi+asXba+ -+ +ayX by (1.15)
It can be shown that D, D; and D. are independent of the representation (1.12).

The indeterminate vector product obeys the distributive laws

a(b+c¢) = ab + ac (1.16)
(a+b)e = ac + be (1.17)
(a+b)(c+d) = ac+ ad + be+ bd (1.18)
and if A and p are any scalars,
(A +u)ab = rab + pab (1.19)

(ra)b = a(Ab) = rab (1.20)
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If v is any vector, the dot products v-D and D- v are the vectors defined respectively by
veD = (v:abi+ (veadby+ - - + (veanby = u (1.21)
D-v = ai(bi*v) + ag(bz*v) + --- +an(byv'Vv) = W (1.22)

In (1.21) D is called the postfactor, and in (1.22) it is called the prefactor. Two dyadics D
and E are equal if and only if for every vector v, either
v'D = v+E or D-v = E'v (1.23)
The unit dyadic, or idemfactor |, is the dyadic which can be represented as
| = e + e + €6 (1.24)
where @i, €2, €; constitute any orthonormal basis for three-dimensional Euclidean space
(see Section 1.7). The dyadic I is characterized by the property

I'v = vl = v (1.25)
for all vectors v.

The cross products v X D and D X v are the dyadics defined respectively by
vXD = (vXa)b + (vXagbs+ -+ +(vXan)by = F (1.26)
DXv = ai(bi Xv) +as(be Xv)+ --- +an(bvXVv) = G (1.27)

The dot product of the dyads ab and cd is the dyad defined by
ab.cd = (b-c)ad (1.28)
From (1.28), the dot product of any two dyadics D and E is the dyadic
D-E = (ajb;+aby+ - - - +anby) * (cidi +cod2 + - - - + endn)

= (bi*ci)aid; + (bi*co)aidz + - - - + (by*cn)andy = G (1.29)
The dyadics D and E are said to be reciprocal of each other if
E‘D = D‘E =1 (1.30)

For reciprocal dyadics, the notation E=D~! and D =E~! is often used.

Double dot and cross products are also defined for the dyads ab and ed as follows,

ab : ¢d = (a-c)(b-d) = A, ascalar (1.31)
ab”Xcd = (axc)b-d) = h, avector (1.32)
aby cd = (a-c)(bxd) =g, avector (1.33)
abled = (axc)(bxd) = uw, adyad (1.34)

From these definitions, double dot and cross products of dyadics may be readily developed.
Also, some authors use the double dot product defined by

ab--cd = (b-c)(a-d) = A, ascalar (1.85)
A dyadic D is said to be self-conjugate, or symmetric, if
D = D, (1.36)
and anti-self-conjugate, or anti-symmetric, if
D = —D. (1.87)

Every dyadic may be expressed uniquely as the sum of a symmetric and anti-symmetric
dyadic. For the arbitrary dyadic D the decomposition is

D= 3D+D)+4D—-D,) = G+H (1.38)
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for which G:. = 4(Dc+(Do)c) = 4(D.+D) = G (symmetric) (1.39)
and H. = 4(Dc.— (D)) = 4(D.—D) = —H (anti-symmetric) (1.40)
Uniqueness is established by assuming a second decomposition, D = G* + H*. Then
G*+H* = G+H (1.41)
and the conjugate of this equation is
G*—H* = G—H (1.42)

Adding and subtracting (1.41) and (1.42) in turn yields respectively the desired equalities,
G* =G and H* =H,

1.7 COORDINATE SYSTEMS. BASE VECTORS. UNIT VECTOR TRIADS

A vector may be defined with respect to a particular coordinate system by specifying
the components of the vector in that system. The choice of coordinate system is arbitrary,
but in certain situations a particular choice may be advantageous. The reference system
of coordinate axes provides units for measuring vector magnitudes and assigns directions
in space by which the orientation of vectors may be determined.

The well-known rectangular Cartesian coordi-
nate system is often represented by the mutually
perpendicular axes, Oxyz shown in Fig. 1-5. Any
vector v in this system may be expressed as a
linear combination of three arbitrary, nonzero,
noncoplanar vectors of the system, which are
called base vectors. For base vectors a,b,c and
suitably chosen scalar coefficients A, x, v the vector
v is given by

vV = Aa + ‘ub + ve (143)

Base vectors are by hypothesis linearly independ-
ent, i.e. the equation
M+ pb+ve =0 (144)

is satisfied only if A =p=v=0. A set of base
vectors in a given coordinate system is said to
constitute a basis for that system. Fig. 1-5

The most frequent choice of base vectors for the rectangular Cartesian system is the

set of unit vectors ‘1\,5\,1‘; along the coordinate axes as shown in Fig. 1-5. These base vectors
constitute a right-handed unit vector triad, for which

ixj=k jxk=1 kxi=3j (1.45)
and ?;:;‘]\:f(ﬁzl
if=5k=%k1=0 (1.46)

Such a set of base vectors is often called an orthonormal basis.
In terms of the unit triad ‘i\, ‘j\, ﬁ, the vector v shown in Fig. 1-6 below may be expressed by
vV = vi+ v + vk (1.47)

in which the Cartesian components
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= VCO0Sa

= vcospB A2

<
«
"
<
B i) mie)

= vcosy

are the projections of v onto the coordinate axes.
The unit vector in the direction of v is given ac-
cording to (1.7) by

e = v/v

A

= (cos a)‘i\ + (cos B)§ + (cosy)k  (1.48)

“‘} B,
<

Since v is arbitrary, it follows that any unit vec-
tor will have the direction cosines of that vector
as its Cartesian components.

In Cartesian component form the dot product
of a and b is given by

a'h = (@:1+ay)+ak): (b:1+0by) +b.k)
= azb: + ayby + a.b. (1.49) Fig.1-6

For the same two vectors, the cross product a X b is
axb = (ayb:— a:by) T + (@:br — a:bs)§ + (a:by— bk (1.50)
This result is often presented in the determinant form

i J ok
axb = la ay a. (1.51)
b, by b.
in which the elements are treated as ordinary numbers. The triple scalar product may also
be represented in component form by the determinant

ax ay az
[abe] = |b. b, b, (1.52)
C: Cy C:

In Cartesian component form, the dyad ab is given by
ab = (.1 + @y + ak)(be1 + b, + b.k)
= ab.ii + axby}iuj\ + asbaik
+ aybxlj\f + ayby}j\lj\ + aybz'j\i;
+ @bk} + abykF + a:b.kk (1.58)
Because of the nine terms involved, (1.58) is known as the nonion form of the dyad ab.
It is possible to put any dyadic into nonion form. The nonion form of the idemfactor in
terms of the unit triad 'i\, 'j\,ﬁ is given by
1= 3i+37+kk (1.54)
In addition to the rectangular Cartesian coordinate system already discussed, curvi-
linear coordinate systems such as the cylindrical (R,6,2) and spherical (r,0,¢) systems
shown in Fig. 1-7 below are also widely used. Unit triads (€g, &, &:) and (&, €, &) of base
vectors illustrated in the figure are associated with these systems. However, the base

vectors here do not all have fixed directions and are therefore, in general, functions of
position.
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.
x e

(a) Cylindrical (b) Spherical
Fig.1-7

1.8 LINEAR VECTOR FUNCTIONS. DYADICS AS LINEAR VECTOR OPERATORS

A vector a is said to be a function of a second vector b if a is determined whenever
b is given. This functional relationship is expressed by the equation

a = f(b) (1.55)

The function f is said to be linear when the conditions
f(b+¢) = f(b) + f(c) (1.56)
f(Ab) = Af(b) (1.57)

are satisfied for all vectors b and ¢, and for any scalar .

Writing b in Cartesian component form, equation (1.55) becomes

a = (b1 + b,j + bek) (1.58)
which, if f is linear, may be written
a = b.f(1) + b,f(3) + bufi(k) (1.59)
In (1.59) let f(i)=u, £f(§)=v, f(k)=w, so that now
a=uib+vib+wkb=@itvitwk) b (1.60)

which is recognized as a dyadic-vector dot product and may be written
a=D-b (1.61)

where D = ui-+ v§+wﬁ. This demonstrates that any linear vector function f may be
expressed as a dyadic-vector product. In (1.61) the dyadic D serves as a linear vector
operator which operates on the argument vector b to produce the image vector a.

1.9 INDICIAL NOTATION. RANGE AND SUMMATION CONVENTIONS

The components of a tensor of any order, and indeed the tensor itself, may be represented
clearly and concisely by the use of the indicial notation. In this notation, letter indices,
either subscripts or superscripts, are appended to the generic or kernel letter representing
the tensor quantity of interest. Typical examples illustrating use of indices are the tensor

- symbols ) ;
ai, b, Ty, F’, €y, R
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In the “mixed” form, where both subscripts and superscripts appear, the dot shows that j
is the second index.

Under the rules of indicial notation, a letter index may occur either once or twice in a
given term. When an index occurs unrepeated in a term, that index is understood to take
on the values 1,2, ..., N where N is a specified integer that determines the range of the
index. Unrepeated indices are known as free indices. The tensorial rank of a given term
is equal to the number of free indices appearing in that term. Also, correctly written
tensor equations have the same letters as free indices in every term.

When an index appears twice in a term, that index is understood to take on all the
values of its range, and the resulting terms summed. In this so-called summation conven-
tion, repeated indices are often referred to as dummy indices, since their replacement by
any other letter not appearing as a free index does not change the meaning of the term in
which they occur. In general, no index occurs more than twice in a properly written term.
If it is absolutely necessary to use some index more than twice to satisfactorily express a
certain quantity, the summation convention must be suspended.

The number and location of the free indices reveal directly the exact tensorial character
of the quantity expressed in the indicial notation. Tensors of first order are denoted by
kernel letters bearing one free index. Thus the arbitrary vector a is represented by a symbol
having a single subscript or superscript, i.e. in one or the other of the two forms,

a;, a

The following terms, having only one free index, are also recognized as first-order tensor
quantities:
aiib;, Fire, Riap, €ixttive

Second-order tensors are denoted by symbols having fwo free indices. Thus the arbitrary
dyadic D will appear in one of the three possible forms

Di, DY or D%, Dy

In the “mixed” form, the dot shows that j is the second index. Second-order tensor
quantities may also appear in various forms as, for example,

Aijip, BY 5, Siuiv

By a logical continuation of the above scheme, third-order tensors are expressed by symbols
with three free indices. Also, a symbol such as A which has no indices attached, represents
a scalar, or tensor of zero order.

In ordinary physical space a basis is composed of three, noncoplanar vectors, and so
any vector in this space is completely specified by its three components. Therefore the
range on the index of a;, which represents a vector in physical three-space, is 1,2,3.
Accordingly the symbol a; is understood to represent the three components ai,as, a;. Also,
a; is sometimes interpreted to represent the ith component of the vector or indeed to rep-
resent the vector itself. For a range of three on both indices, the symbol A;; represents
nine components (of the second-order tensor (dyadic) A). The tensor Ay is often presented
explicitly by giving the nine components in a square array enclosed by large parentheses as

All A12 A13

Aij = A21 A22 A23 (1 62)
Az Ap As
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In the same way, the components of a first-order tensor (vector) in three-space may be

displayed explicitly by a row or column arrangement of the form

ay
ai = (a,az,a3) or @ = |a:
as

In general, for a range of N, an nth order tensor will have N® components.

(1.63)

The usefulness of the indicial notation in presenting systems of equations in compact
form is illustrated by the following two typical examples. For a range of three on both

1 and 7 the indicial equation
Xi = CiyRj

represents in expanded form the three equations
Ty = €121 + C12%2 + C13%3
Ly = C2121 + Ca222 + C2323
T3 = C€3:121 + C3o%2 + C3323
For a range of two on ¢ and 7, the indicial equation -
Ay = BipCiqDrq
represents, in expanded form, the four equations
Ay = BiiCuDu + B1CieDi2 + B12C11D2y + B12C12Ds
Az = BuCauDi + B11Ca:D1s + B12C21D2y + B15C22Dss
Az = BuCuDii + B21C13Dis + Bs2C11Dsy + ByeCr2Dsy
Az = B2C2nDyy + BaiCosD1s + B2eCo1Day + ByyCasDyy

(1.64)

(1.65)

(1.66)

(1.67)

For a range of three on both 7 and 7, (1.66) would represent nine equations, each having

nine terms on the right-hand side.

1.10 SUMMATION CONVENTION USED WITH SYMBOLIC NOTATION

The summation convention is very often em-
ployed in connection with the representation of
vectors and tensors by indexed base vectors
written in the symbolic notation. Thus if the
rectangular Cartesian axes and unit base vectors
of Fig. 1-5 are relabeled as shown by Fig. 1-8,
the arbitrary vector v may be written

vV = ’1)181 + ’1)282 + ’1)363 (1.68)

in which v,,vs, va are the rectangular Cartesian
components of v. Applying the summation con-
vention to (1.68), the equation may be written in
the abbreviated form

vV = vié‘i (1.69)

where 7 is a summed index. The notation here is
essentially symbolic, but with the added feature
of the summation convention. In such a ‘“com-
bination” style of notation, tensor character is
not given by the free indices rule as it is in true
indicial notation. Fig. 1-8

23

Zg
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Second-order tensors may also be represented by summation on indexed base vectors.
Accordingly the dyad ab given in nonion form by (1.53) may be written

ab = (aié\i)(b,-'éj) = aibjéiéj (170)

It is essential that the sequence of the base vectors be preserved in this expression. In

similar fashion, the nonion form of the arbitrary dyadic D may be expressed in compact

notation by .~
D = D;e€; (1.71)

1.11 COORDINATE TRANSFORMATIONS. GENERAL TENSORS

Let z' represent the arbitrary system of coordinates x!,z% x® in a three-dimensional
Euclidean space, and let ¢ represent any other coordinate system 6',6% 6% in the same
space. Here the numerical superscripts are labels and not exponents. Powers of x may
be expressed by use of parentheses as in (2)® or (z)®. The letter superscripts are indices
as already noted. The coordinate transformation equations

0t = 6%(x, 22, z9) (1.72)

assign to any point (2, 22, 2%) in the 2’ system a new set of coordinates (¢!, 62, ¢°) in the ¢!
system. The functions 6 relating the two sets of variables (coordinates) are assumed to
be single-valued, continuous, differentiable functions. The determinant

0 a0 o0
ox!  9x® 9x?

7 T lox' oz ot (2.79)

dx! 9x2 9

or, in compact form, )
J o= ‘ﬁ’ (1.74)

T | ea? ’
is called the Jacobian of the transformation. If the Jacobian does not vanish, (1.72)

possesses a unique inverse set of the form
xi = (01, 62, 6%) (1.75)

The coordinate systems represented by z' and ¢ in (1.72) and (1.75) are completely general
and may be any curvilinear or Cartesian systems.

From (1.72), the differential vector d¢' is given by

. 96 .
i = 7 3
do o 2 (1.76)
This equation is a prototype of the equation which defines the class of tensors known as
contravariant vectors. In general, a set of quantities b’ associated with a point P are said
to be the components of a contravariant tensor of order one if they transform, under a
coordinate transformation, according to the equation
30

b= b (1.77)

where the partial derivatives are evaluated at P. In (1.77), b’ are the components of the
tensor in the 2’ coordinate system, while b’t are the components in the ¢ system. In general
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tensor theory, contravariant tensors are recognized by the use of superscripts as indices.
It is for this reason that the coordinates are labeled z* here rather than z;, but it must be
noted that it is only the differentials dxi, and not the coordinates themselves, which have
tensor character.

By a logical extension of the tensor concept expressed in (1.77), the definition of con-
travariant tensors of order two requires the tensor components to obey the transformation

law )
' 3 o,

o=
B dx” oxs

(1.78)

Contravariant tensors of third, fourth and higher orders are defined in a similar manner.

The word contravariant is used above to distinguish that class of tensors from the
class known as covariant tensors. In general tensor theory, covariant tensors are recognized
by the use of subscripts as indices. The prototype of the covariant veclor is the partial -
derivative of a scalar function of the coordinates. Thusif ¢ = ¢(x', 2% 2% is such a function,

a6 9 o’
= ogdag (1.79)

In general, a set of quantities b; are said to be the components of a covariant temnsor of
order one if they transform according to the equation

’ 0x’
AL N .80
b 3 b; (1.80)
In (1.80), b; are the covariant components in the ¢* system, b; the components in the z;
system. Second-order covariant tensors obey the transformation law

’ ox" ox®
BU W 601 rs (1.81)
Covariant tensors of higher order and mixed fensors, such as
- 90" ax™ 9x?, m
T, 527 367 397 L -na (1.82)

are defined in the obvious way.

1.12 THE METRIC TENSOR. CARTESIAN TENSORS

Let zt represent a system of rectangular Cartesian coordinates in a Euclidean three-
space, and let ¢ represent any system of rectangular or curvilinear coordinates (e.g. cylindri-
cal or spherical coordinates) in the same space. The vector x having Cartesian components
x' is called the position vector of the arbitrary point P(x, 22, z°) referred to the rectangular
Cartesian axes. The square of the differential element of distance between neighboring
points P(x) and Q(x +dx) is given by

(ds)? = dzidaxt (1.83)
From the coordinate transformation

xt = 261, 62, 6%) (1.84)
relating the systems, the distance differential is

oxt
dx‘ = (W d0" (1.85)
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and therefore (1.83) becomes
67 944
where the second-order tensor g, = (92%/96*)(dx/96%) is called the metric tensor, or funda-

mental tensor of the space. If ¢ represents a rectangular Cartesian system, say the z"
system, then

(ds)? depdes = gpdorden (1.86)

Gpa = aa—;:; é(%; = 8pq (1'87)
where 8,4 is the Kronecker delta (see Section 1.13) defined by §,, =0 if p+#¢ and §,,=1
if p=aq.

Any system of coordinates for which the squared differential element of distance takes
the form of (1.83) is called a system of homogeneous coordinates. Coordinate transforma-
tions between systems of homogeneous coordinates are orthogonal transformations, and
when attention is restricted to such transformations, the tensors so defined are called
Cartesian tensors. In particular, this is the case for transformation laws between systems
of rectangular Cartesian coordinates with a common origin. For Cartesian tensors there
is no distinction between contravariant and covariant components and therefore it is cus-
tomary to use subscripts exclusively in expressions representing Cartesian tensors. As
will be shown next, in the transformation laws defining Cartesian tensors, the partial
derivatives appearing in general tensor definitions, such as (7.80) and (1.81), are replaced
by constants. '

1.13. TRANSFORMATION LAWS FOR CARTESIAN TENSORS.
THE KRONECKER DELTA. ORTHOGONALITY CONDITIONS

Let the axes Oxix2xs and Oxixixzi represent
two rectangular Cartesian coordinate systems
with a common origin at an arbitrary point O
as shown in Fig. 1-9. The primed system may be
imagined to be obtained from the unprimed by
a rotation of the axes about the origin, or by a
reflection of axes in one of the coordinate planes,
or by a combination of these. If the symbol aj
denotes the cosine of the angle between the ith
primed and jth unprimed coordinate axes, i.e.
a;; = cos (2!, z;), the relative orientation of the
individual axes of each system with respect to the
other is conveniently given by the table

Xy Lo x3
’
EZ1 a1 a2 a3
’
g2 Qg1 Q22 Q23
’
z3 asy 21 agzs Fig.1-9

or alternatively by the transformation tensor

A Gz Qi3
A = Q1 QA2 Qo3
31 (32 ass
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From this definition of a, the unit vector €] along the zi axis is given according to (1.48)
and the summation convention by

’
/él = @181 + U128 + 1283 = a1;€ (1‘88)

An obvious generalization of this equation gives the arbitrary unit base vector 'é; as

‘é{ = i@ (1.89)
In component form, the arbitrary vector v shown in Fig. 1-9 may be expressec in the
unprimed system by the equation
v = ;& (1.90)
and in the primed system by

A’

v = vie; (1.91)
Replacing & in (1.91) by its equivalent form (7.89) yields the result
vV = via;e; (1.92)

Comparing (1.92) with (1.90) reveals that the vector components in the primed and unprimed
systems are related by the equations

v = ai,-vi' (1.93)

- The expression (1.93) is the transformation law for first-order Cartesian tensors, and as
such is seen to be a special case of the general form of first-order tensor transformations,
expressed by (1.80) and (1.77). By interchanging the roles of the primed and unprimed
base vectors in the above development, the inverse of (1.93) is found to be

v = aiv; (1.94)

It is important to note that in (1.93) the free index on ay; appears as the second index. In
(1.94), however, the free index appears as the first index.

By an appropriate choice of dummy indices, (1.93) and (1.94) may be combined to pro-
duce the equation
Vi = QijQiVk (195)

Since the vector v is arbitrary, (1.95) must reduce to the identity v; = v;. Therefore the
coefficient aijaix, whose value depends upon the subscripts j and %, must equal 1 or 0
according to whether the numerical values of 7 and %k are the same or different. The
Kronecker delta, defined by

1 for i=7

8i; = 1.96
! {0 for 1#7 ( )

may be used to represent quantities such as a;;ax. Thus with the help of the Kronecker delta
the conditions on the coefficient in (1.95) may be written

aijaix = 8 (1.97)

In expanded form, (1.97) consists of nine equations which are known as the orthogonality
or orthonormality conditions on the direction cosines ai. Finally, (1.93) and (1.94) may also
be combined to produce v; = aijaxjor from which the orthogonality conditions appear in the
alternative form

Qijle; = Bk (1.98)

A linear transformation such as (1.93) or (1.94), whose coefficients satisfy (1.97) or (1.98),
is said to be an orthogonal transformation. Coordinate axes rotations and reflections of
the axes in a coordinate plane both lead to orthogonal transformations.




CHAP. 1] MATHEMATICAL FOUNDATIONS 15

The Kronecker delta is sometimes called the substitution operator, since, for example,

8iib; = 8i1b1 + 8iebs + 8isbs = by (1.99)
and, likewise,
8i;Fu = 81jF 1 + 82iF ok + 83iF s = Fi (1.100)

It is clear from this property that the Kronecker delta is the indicial counterpart to the
symbolic idemfactor I, which is given by (1.54).

According to the transformation law (1.94), the dyad wiv; has components in the primed
coordinate system given by

wV; = (Qiplp)(AiqVq) = AipQiqUpVq (1.101)

In an obvious generalization of (1.101), any second-order Cartesian tensor T obeys the

transformation law ,
T = antiqTh (1.102)

With the help of the orthogonality conditions it is a simple calculation to invert (1.102),
thereby giving the transformation rule from primed components to unprimed components:
Ty = Gpita; Tq (1.103)

The transformation laws for first and second-order Cartesian tensors generalize for an
Nth order Cartesian tensor to
Tl,Jk L. = QpQiqem . . . qumA .. (1101;)

114 ADDITION OF CARTESIAN TENSORS. MULTIPLICATION BY A SCALAR

Cartesian tensors of the same order may be added (or subtracted) component by com-
ponent in accordance with the rule

Aij... = Bijge... = Tije... (1.105)

The sum is a tensor of the same order as those added. Note that like indices appear in the
same sequence in each term.

Multiplication of every component of a tensor by a given scalar produces a new tensor of
the same order. For the scalar multiplier A, typical examples written in both indicial

and symbolic notation are .
bi = xi or b = a (1.106)

Bij = MAj; or B =) . (1.107)

115 TENSOR MULTIPLICATION

The outer product of two tensors of arbitrary order is the tensor whose components
"are formed by multiplying each component of one of the tensors by every component of the
other. This process produces a tensor having an order which is the sum of the orders of
the factor tensors. Typical examples of outer products are

((l) aib,- = Tij (C) Dikam = Dyjkm
(b) viFj = (d) €iikvm = Oijkm

As indicated by the above examples, outer products are formed by simply setting down the
factor tensors in juxtaposition. (Note that a dyad is formed from two vectors by this very
procedure.)
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Contraction of a tensor with respect to two free indices is the operation of assigning
to both indices the same letter subscript, thereby changing these indices to dummy indices.
Contraction produces a tensor having an order two less than the original. Typical examples
of contraction are the following.

(a) Contractions of T and uv;
Ti = T+ Te+ Ty

UiVi = UIV1 + U2V + UsV3

(b) Contractions of Eijax

Eija; = b
Ei,-ai = Cj
Eiar = dx

(¢) Contractions of EFim
EiiFim = Gim E;Fw. = P;
EyFu = Hg EiFm = Qm
EiFim = Kim E;Fx; = Ry
An inner product of two tensors is the result of a contraction, involving one index from
each tensor, performed on the outer product of the two tensors. Several inner products

important to continuum mechanics are listed here for reference, in both the indicial and
symbolic notations.

Outer Product Inner Product
Indicial Notation Symbolic Notation
1. ab; a:b; a*b
2. wEx aEwx = fi a‘E = f
aEy = Ry E-a = h
3. EyFin EiFim = G E‘F=G6
4. EijEm EyEm = Bin E-E = (E)?

Multiple contractions of fourth-order and higher tensors are sometimes useful. Two
such examples are
1. EijFm contracted to E;Fy, or E:F
2. EyjExmE,q contracted to EyEmEng or (E)?

1.16 VECTOR CROSS PRODUCT. PERMUTATION SYMBOL. DUAL VECTORS

In order to express the cross product a X b in the indicial notation, the third-order tensor
;o known as the permutation symbol or alternating tensor, must be introduced. This
useful tensor is defined by

(1 if the values of 4,7,k are an even permutation of 1,2,3 (i.e. if
they appear in sequence as in the arrangement 1231 2).

—1 if the values of 4,7,k are an odd permutation of 1,2,8 (i.e. if

igk they appear in sequence as in the arrangement 3 2 1 3 2).

0 if the values of 4,7,k are not a permutation of 1,2,38 (i.e. if
L two or more of the indices have the same value).
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From this definition, the cross product axb =c¢ is written in indicial notation by

€ijk(ljbk = G (1.108)
Using this relationship, the box product axXb-c = may be written
A = egaibie (1.109)

Since the same box product is given in the form of a determinant by (1.52), it is not sur-
prising that the permutation symbol is frequently used to express the value of a 3 X3
determinant.

It is worthwhile to note that ¢, obeys the tensor transformation law for third order
Cartesian tensors as long as the transformation is a proper one (detay = 1) such ag arises
from a rotation of axes. If the transformation is improper (detai; = —1), e.g. a reflection
in one of the coordinate planes whereby a right-handed coordinate system is transformed
into a left-handed one, a minus sign must be inserted into the transformation law for .

Such tensors are called pseudo-tensors.
The dual vector of an arbitrary second-order Cartesian tensor T is defined by
vi = €Ty (1.110)

which is observed to be the indicial equivalent of T,, the “vector of the dyadic T”, as defined
by (1.15).

117 MATRICES. MATRIX REPRESENTATION OF CARTESIAN TENSORS

A rectangular array of elements, enclosed by square brackets and subject to certain laws
of combination, is called a matriz. An M X N matrix is one having M (horizontal) rows
and N (vertical) columns of elements. In the symbol Aj used to represent the typical
element of a matrix, the first subscript denotes the row, the second subscript the column
occupied by the element. The matrix itself is designated by enclosing the typical element
symbol in square brackets, or alternatively, by the kernel letter of the matrix in script.
For example, the M X N matrix o4, or [Ay] is the array given by

A11 A12 PR AIN
A = [4y) = |4 A”._'.". .A_”_“. : (1.111)
Avi Ame Aun

A matrix for which M = N, is called a square matriz. A 1x N matrix, written [au],
is called a row matriz. An M X 1 matrix, written [a«1], is called a column matriz. A matrix
having only zeros as elements is called the zero matriz. A square matrix with zeros every-
where except on the main diagonal (from A to Anw) is called a diagonal matriz. If the
nonzero elements of a diagonal matrix are all unity, the matrix is called the unit or identity
matriz. The N X M matrix 4T, formed by interchanging rows and columns of the M X N
matrix 4, is called the transpose matrixz of 4.

Matrices having the same number of rows and columns may be added (or subtracted)
element by element. Multiplication of the matrix [Ay] by a scalar A results in the matrix
[AA;]. The product of two matrices, 4B, is defined only if the matrices are conformable,
i.e. if the prefactor matrix ¢4 has the same number of columns as the postfactor matrix
B has rows. The product of an M X P matrix multiplied into a P X N matrix is an M X N
matrix. Matrix multiplication is usually denoted by simply setting down the matrix
symbols in juxtaposition as in

cAB = (C or [Aij][Bjk] = [Cik] (1.112)
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Matrix multiplication is not, in general, commutative: c4B 7 BeA.

A square matrix ¢4 whose determinant |A;| is zero is called a smgular matrixz. The
cofactor of the element A;; of the square matrix <4, denoted here by A1j, is defined by

AL = (-1)iIMy (1.113)

in which M;; is the minor of A;; i.e. the determinant of the square array remaining after the
row and column of A;; are deleted. The adjoint matrix of ¢4 is obtained by replacing each
element by its cofactor and then interchanging rows and columns. If a square matrix
ed = [Ay] is non-singular, it possesses a unique inverse matriz ¢4 ! which is defined as

the adjoint matrix of ¢4 divided by the determinant of <4. Thus
A~ = [45] (1.114)

=l |
From the inverse matrix definition (1.114) it may be shown that

A"l = cAcA™ = (1.115)

where J is the tdentity matriz, having ones on the principal diagonal and zeros elsewhere,
and so named because of the property

JA = A = A (1.116)

It is clear, of course, that J is the matrix representation of §,, the Kronecker delta, and of I,
the unit dyadic. Any matrix ¢4 for which the condition 4T =c4~! is satisfied is called
an orthogonal matriz. Accordingly, if ¢4 is orthogonal,

ATeA = cAAT = 9 (1.117)

As suggested by the fact that any dyadic may be expressed in the nonion form (1.53),
and, equivalently, since the components of a second-order tensor may be displayed in the
square array (1.62), it proves extremely useful to represent second-order tensors (dyadics)
by square, 3 X 3 matrices. A first-order tensor (vector) may be represented by either a
1 X 8 row matrix, or by a 3 X 1 column matrix. Although every Cartesian tensor of order
two or less (dyadics, vectors, scalars) may be represented by a matrix, not every matrix
represents a tensor.

If both matrices in the product <4B = ( are 8 X 8 matrices representing second-order
tensors, the multiplication is equivalent to the inner product expressed in indicial notation by

Aiijk = Ci (1.118)

where the range is three. Expansion of (1.118) duplicates the “row by column” multiplica-
tion of matrices wherein the elements of the ith row of the prefactor matrix are multiplied
in turn by the elements of the kth column of the postfactor matrix, and these products
summed to give the element in the ith row and kth column of the product matrix. Several
such products occur repeatedly in continuum mechanics and are recorded here in the various
notations for reference and comparison.

(a) Vector dot product
a*b = b-a

A lau)[bn] = [A]

b
abi = biwi = A [a1,a2,a3) | be | = [aibi + a2bz + asbs) (1.119)
bs
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(b) Vector-dyadic dot product

a*E=> a€ = B
aEy = b; [au] [Eij] = [blj]
Eu E; E13—| [@1E11 + asEs + asEs, (1.120)
[a1,az,a3] | Ea1 Ky Eos = aiF + aEy + asFss,
Es Es Ess a1E13 + a2E2s + asEss)
(¢) Dyadic-vector dot product
E-a = ¢ a = ¢
Eijaj = ¢ [Eij] [(111] - [cil]
Euw Ey Eu | a a1iEy + a2E2 + asEss (1.121)
Exn E; Ej | a = a1E2 + asE2 + asEss
E:zn Es; Ess || as a:1Es + a2Es + asE'ss

118 SYMMETRY OF DYADICS, MATRICES AND TENSORS

According to (1.36) (or (1.87)), a dyadic D is said to be symmetric (anti-symmetric) if it is
equal to (the negative of) its conjugate D.. Similarly the second-order temsor Dy is
symmetric if

Dy = Dy (1.122)
and is anti-symmetric, or skew-symmetric, if
Di = —Dy (1.123)
Therefore the decomposition of D;; analogous to (1.38) is
Dy = ¥(Dy+ Dy) + $(Dis— Dy) (1.124)
or, in an equivalent abbreviated form often employed,
Dy = Duj + Dun (1.125)

where parentheses around the indices denote the symmetric part of D;;, and square brackets
on the indices denote the anti-symmetric part.

Since the interchange of indices of a second-order tensor is equivalent to the interchange
of rows and columns in its matrix representation, a square matrix <4 is symmetric if it is
equal to its transpose c47. Consequently a symmetric 8 X 8 matrix has only six independent
components as illustrated by

All A12 A13
A = CHT = A12 A22 A23 (1126)
A13 A23 A33

An anti-symmetric matrix is one that equals the negative of its transpose. Consequently
a 3 X 3 anti-symmetric matrix B has zeros on the main diagonal, and therefore only three
independent components as illustrated by
0 By Bis
B = —-BT = ~Bi; 0 By (1.127)

'—BIS _B23 0
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Symmetry properties may be extended to tensors of higher order than two. In general,
an arbitrary tensor is said to be symmetric with respect to a pair of indices if the value of
the typical component is unchanged by interchanging these two indices. A tensor is anti-
symmetric in a pair of indices if an interchange of these indices leads to a change of sign
without a change of absolute value in the component. Examples of symmetry properties
in higher-order tensors are

(@) Rixm = Rixim (symmetric in k and j)

(b) ¢ it (anti-symmetric in k and 7)
(¢) Gikm = Giime (symmetric in ¢ and 7; k and m)
(d) Bix = Bik; = Brsi = B (symmetric in all indices)

1.19 PRINCIPAL VALUES AND PRINCIPAL DIRECTIONS OF SYMMETRIC
SECOND-ORDER TENSORS

In the following analysis, only symmetric tensors with real components are considered.
This simplifies the mathematics somewhat, and since the important tensors of continuum
mechanics are usually symmetric there is little sacrifice in this restriction.

For every symmetric tensor T, defined at some point in space, there is associated with
each direction (specified by the unit normal n:) at that point, a vector given by the inner

product
v = Tyny (1.128)

Here T may be envisioned as a linear vector operator which produces the vector v; conjugate
to the direction n;.. If the direction is one for which v: is parallel to #;, the inner product
may be expressed as a scalar multiple of ni. For this case,

Tiyn; = A (1.129)

and the direction #; is called a principal direction, or principal axis of Ty, With the help
of the identity n:= &im;, (1.129) can be put in the form

(Ty— A8iyn; = 0 (1.130)
which represents a system of three equations for the four unknowns, n; and ), associated
with each principal direction. In expanded form, the system to be solved is

(Tyu—am1 + Tiemg + T1sng = 0
Tong + (Toa— Mg + Tasng = 0 (1.131)
Taing + Taane + (Tss—A)ng = 0

Note first that for every A, the trivial solution #; = 0 satisfies the equations. The purpose
here, however, is to obtain non-trivial solutions. Also, from the homogeneity of the system
(1.131) it follows that no loss of generality is incurred by restricting attention to solutions
for which #mi = 1, and this condition is imposed from now on.

For (1.130) or, equivalently, (1.131) to have a non-trivial solution, the determinant of

coefficients must be zero, that is,
ITij_ /\Sijl =0 (1.132)

Expansion of this determinant leads to a cubic polynomial in A, namely,

)\3 - IT/\2 + IIT/\ - IIIT = 0 (1133)

which is known as the characteristic equation of Ti, and for which the scalar coefficients,
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L =Ty = trTy (tr?.ce of Tij) (1.134)
IIT = -%(Tu T]'j - Ti]' Ti]') (1 ’135)
I, = IT{,‘I = det Ty (1.136)

are called the first, second and third invariants, respectively, of Ti;. The three roots of the
cubic (1.133), labeled A, A2y, A, are called the principal values of Ti;. For a symmetric
tensor with real components, the principal values are real; and if these values are distinct,
the three principal directions are mutually orthogonal. When referred to principal axes,
both the tensor array and its matrix appear in diagonal form. Thus

Ay O 0 Ay O 0
T = 0 A 0 or T = 0 A2) 0 (1.137)
0 0 /\(3) 0 0 /\(3)

If Aa) =A@, the tensor has a diagonal form which is independent of the choice of A1)
and A axes, once the principal axis associated with Axy has been established. If all
principal values are equal, any direction is a principal direction. If the principal values are
ordered, it is customary to write them as A, Aap, Aam and to display the ordering as in
Ao 2 Aan 2 Aam-

For principal axes labeled Ox*z§z¥, the transformation from Ozix.zs axes is given by
the elements of the table

1 g x5
xf ay = n{V agp = n{P a33 = n{d
x3 ag = n{? gy = P ag5 = n®
e ag = n{® azp = n{® agy = n{®

in which n{” are the direction cosines of the jth principal direction.

120 POWERS OF SECOND-ORDER TENSORS. HAMILTON-CAYLEY EQUATION

By direct matrix multiplication, the square of the tensor T is given as the inner
product T Ty, the cube as Tix Tiw Tmy; etc. Therefore with Ty written in the diagonal form
(1.137), the nth power of the tensor is given by

AXp O 0 Mo O 0
m = 0 Ao 0 or T = 0 A& O (1.138)
0 0 )\7(!3) 0 0 )\7;3)

A comparison of (1.138) and (1.187) indicates that Ti; and all its integer powers have the
same principal axes.

Since each of the principal values satisfies (1.183), and because of the diagonal matrix
form of T given by (1.138), the tensor itself will satisfy (1.133). Thus

T8 —LiT?+ II,T - I11,9 = 0 (1.189)

in which 9 is the identity matrix. This equation is called the Hamilton-Cayley equation.
Matrix multiplication of each term in (1.139) by T produces the quation,

T4 - I'r‘I-3 - IITT?‘ + IIITT (1140)
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Combining (1.140) and (1.139) by direct substitution,
Tt = (B—1II)T? + (IIL — LII)T + LIIL9 (1.141)

Continuation of this procedure yields the positive powers of T as linear combinations of
T2, T and J.

1.21 TENSOR FIELDS. DERIVATIVES OF TENSORS

A tensor field assigns a tensor T(x,t) to every pair (x,¢) where the position vector x
varies over a particular region of space and ¢ varies over a particular interval of time.
The tensor field is said to be continuous (or differentiable) if the components of T(x,?) are
continuous (or differentiable) functions of x and ¢. If the components are functions of x
only, the tensor field is said to be steady.

With respect to a rectangular Cartesian coordinate system, for which the position vector
of an arbitrary point is

x = z& (1.142)
tensor fields of various orders are represented in indicial and symbolic notation as follbws,
(a) scalar field: ¢ = ¢z, t) or ¢ = $(x,1) (1.1438)
(b) vector field: u = vix,f) or v = v(x,?) (1.144)

(c) second-order tensor field:
Ty = Tyu(x,t) or T = T(x,{) (1.145)

Coordinate differentiation of tensor components with respect to x; is expressed by the
differential operator d/9x;, or briefly in indicial form by ¢, indicating an operator of tensor
rank one. In symbolic notation, the corresponding symbol is the well-known differential
vector operator V, pronounced del and written explicitly

vV = é‘ié% = & (1.146)

Frequently, partial differentiation with respect to the variable x; is represented by the
comma-subscript convention as illustrated by the following examples.

dp v _

@ 5 = % @) 2o = Yun
i Ty _

(b) ox; Vi (e) EY Tij,k
o _ 2Ty _

(c) a_xj' - Ivi,j (f) axk axm - Tij,km

From these examples it is seen that the operator ¢ produces a tensor of order one higher
if © remains a free index ((a) and (c¢) above), and a tensor of order one lower if 7 becomes
a dummy index ((b) above) in the derivative.

Several important differential operators appear often in continuum mechanics and are
given here for reference.

grad¢ = Vo = gﬁ%& or 9,¢ = ¢, (1.147)
divy = v-v or 9,v, = v, (1.148)
curlv = vV Xv Or 30,0, = €, (1.149)

Vi = V Vo or 9,4 = ¢, (1.150)
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1.22 LINE INTEGRALS. STOKES” THEOREM

In a given region of space the vector function of position, F = F(x), is defined at every
point of the piecewise smooth curve C shown in Fig. 1-10. If the differential tangent vector
to the curve at the arbitrary point P is dx, the integral

XB
f Fedx = F-dx (1.151)
C Xa
taken along the curve from A to B is known as the line integral of F' along C. In the indicial
notation, (1.151) becomes
L Fi dxi

il

[€ )

LD

Fig.1-10 Fig.1-11

Stokes’ theorem says that the line integral of F taken around a closed reducible curve
C, as pictured in Fig. 1-11, may be expressed in terms of an integral over any two-sided
surface S which has C as its boundary. Explicitly,

£F-dx = j;ﬁ-(vxF)ds (1.158)

in whiéh 1i is the unit normal on the positive side of S, and dS is the differential element of
surface as shown by the figure. In the indicial notation, (1.153) is written

ﬁFidxi = J;ni%'ka,de (1.154)

123 THE DIVERGENCE THEOREM OF GAUSS

The divergence theorem of Gauss relates a volume integral to a surface integral. In
its traditional form the theorem says that for the vector field v = v(x),

fdivvdV = J;fl'vdS (1.155)
v

where n is the outward unit normal to the bounding surface S, of the volume V in which
the vector field is defined. .In the indicial notation, (1.155) is written

f v, dV = f v dS (1.156)
\4 S

The divergence theorem of Gauss as expressed by (1.156) may be generalized to incor-
porate a tensor field of any order. Thus for the arbitrary tensor field Tix... the theorem is

written
J; Tic..pdV = J; Tip..np dS (1.157)
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Solved Problems

ALGEBRA OF VECTORS AND DYADICS (Sec. 1.1-1.8)

1.1.

1.2

1.3.

14.

Determine in rectangular Cartesian form the
unit vector which is (a) parallel to the vector
v = 2‘i\+3‘j\—6f(, (b) along the line joining
points P(1,0,3) and Q(0,2, 1).

(@ v = v = V@2+ @82+ (62 = 7

$ = ww = @mi+emt-emk Q02,1

(b) The vector extending from P to @ is
A A A
u=(0-Di+E2-0j+1-3)k

= -i+27 -2k
u = V(=12 + @22+ (-22 = 3 Fig. 1-12
Thus A= —W3)i+ @37 — @3k directed from P to Q
or i = w3i- @i+ ek directed from Q to P

Prove that the vector v = ai + b‘j\ +ck is normal
to the plane whose equation is ax + by + cz = A.

Let P(x,,¥,, 2, and @Q(xy, ¥, 25) be any two points in
the plane. Then ax, + by, + ¢z, = X\ and ax, + by, + ez, = A

and the vector joining these points is u = (:c2—-:cl)‘i\ +
A A

(y2— Y3 + (23— 2z;)k. The projection of v in the direction
of uis
u-v 1 2 2
— = Sl w)it (2~ v

u u N A A R

+ (22— z)k] * [ai + bj + ck]
= }t(aa:?‘—i— by, + czy — ax, — by, —cz;) = A ; Ao 0

Since u is any vector in the plane, v is 1 to the plane. Fig.1-13

If r =i + y§+ zk is the vector extending from the origin to the arbitrary point
P(x,y,2) and d = ai+ b‘j\ +ck is a constant vector, show that (r—d)-r=10 is the
vector equation of a sphere.
Expanding the indicated dot product,
c—d)or = [e—a)i+@—bF+ e—ok] =1 +y7 + 2k
= 22+ y2+2—-axr—by—cz = 0
Adding d2/4 = (a2 + b2+ ¢2)/4 to each side of this equation gives the desired equation
(x—a/22+ (y—b/2)2 + (z—¢/2)2 = (d/2)2
which is the equation of the sphere centered at d/2 with radius d/2.

Prove that [a*bXc]r = (a*r)bX ¢ + (b-r)c X a + (c-r)axb.
Consider the product a X [(b X ¢) X r]. By direct expansion of the cross product in brackets,
aX[bXe)Xr] = aX[(ber)e—(cer)b] = —(berjcXa — (c*rjaXb
Also, setting bXe = v,
aX [(bXe)Xr] = aX (vXr) = (a*r)bX e — (a*bXor
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Thus —(b*r)e Xa — (c*r)aXb = (a*r)bXe¢ — (a*bXe)r and so
(a*bXe)r = (a*r)bXc + (ber)jeXa + (c°r)aXb

This identity is useful in specifying the displacement of a rigid body in terms of three arbitrary
points of the body.

1.5. Show that if the vectors a,b and ¢ are linearly dependent, a*bXx ¢ =0. Check the
linear dependence or independence of the basis
N ~
u =3i+j-2k
A A A
v = 41 -3~k
2 A A
w=1-23+k
The vectors a, b and ¢ are linearly dependent if there exist constants A, x and », not all zero,
such that Aa + ub + pc = 0. The component scalar equations of this vector equation are
AN, + pby + ve, = 0
Aa, + uby + ve, = 0
A, + ub, +ve, = 0

This set has a nonzero solution for A, x and » provided the determinant of coefficients vanishes,

ax bx cx
a, b, ¢y = 0
a, b, c,

which is equivalent to a*b X ¢ = 0. For the proposed basis u, v, w,

3 1 -2
4 -1 -1 = 0
1 -2 1

Hence the vectors u, v, w are linearly dependent, and indeed v = u+ w.

1.6. Show that any dyadic of N terms may be reduced to a dyadic of three terms in a
form having the base vectors &, €, €; as (a) antecedents, (b) consequents.
Let D = a;b, +asb, + --- +ayby =ab; (1 =1,2,...,N).
(@) In terms of base vectors, a;= a,;8; + as;8, + a3,6; = aji'éj andso D= aj-i@jbi = 'éj(ajibi) = Qjcj
with § =1,2,3.

(b) Likewise setting b; = b,€; it follows that D = a;6;8; = (b;a,)€; = g;€; where j=1,2,3.

1.7. For the arbitrary dyadic D and vector v, show that D-v = v-D..
Let D = a,b, +ay,b, + -+ +ayby. Then
Dev = a;(b;*v) +aybyev)+ -+ + ayn(by°V)
(veb)a; + (vebyay, + -+ + (veby)ay = v+D,

18. Prove that (D.*D). = D.-D.
From (1.71), D= D,,@l'f?, and D. = D,-i@i@j. Therefore
’DC. D = D,;@i3~‘qu@3q = Djiqu(Sj'sp)sis(l

A A A A A ANA AA AA
and (0.+D). = DyDpq(ejre,)ee; = Dpeq(e,€)e Dy = Dysese, Djeje; = D *D
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1.9. Show that (DX v). = —vXD..
DX v = a;(b; Xv)+ aybyXv)+ - + aylby Xv)
(DXwv), = (b Xv)a; + (by Xv)ay + -+ + (by X v)ay
= —(vXbp)a; — (vXbya, — -+ — (vX bylay = —v XD,
L10. If D = aii+ b;; +ckk and r is the position vector r = zi+ y? + zf(, show
that r*D+r =1 represents the ellipsoid ax® + by® + c22 = 1.
reber = (x?-f— y?—f— zﬁ) . (a?’i\—f— bljuj\-i- cf{ﬁ) . (xli\-f- ylj\—f— zf()

A A A A A A
= (xit+yjtzk)(axi+ byj+eczk) = au2+ by2 +¢22 = 1

1.11. For the dyadics D = 311+ 275 — 7k + 5kk and F = 4ik + 633 — 3kj + kk, com-
pute and compare the double dot products D:F and D--F.

From the definition ab:ecd = (a<c)(bed) it is seen that D:F=12+4+5 =17, Also, from
abe+cd = (bec)(a*d) it follows that D*+<F=12+3+5 = 20.

1.12. Determine the dyadics G =D+F and H=F-D if D and F are the dyadics given in
Problem 1.11.

From the definition abe+ed = (b ¢)ad,

6 = 31i+2jj—ik+5kk)-4ik+6jj—3kj+kk)

an P TP PN anAaa

= 12ik +12§j+3j7 —jk —15kj + 5kk
. AA AA AA AA AA AA AA AA
Similarly, H= 4ik+6jj—3kj+kk)-3ii+27]—jk+5kk)

AA AA AA AA AA
= 20ik+12jj—-6jk —6kj+ 8kk
N N . RN S
1.13. Shon glrectly from the nonion form of the dyadic D that D = (D-i)i +(D*j)j +
A A A A
(D+k)k and also i*D*i = Dy, i*D+j = Dy, ete.
Writing D in nonion form and regrouping terms,
2 A aa A ~ A A A aa
D = (D.‘L‘.‘L‘l + Dyz] + D, k)i+ (nyl + Dyy] + Dzyk)] + (Dgi + Dyz] + D,.k)k
A A A A A A A A A
=di+di+tdk = DI+ DHi+ 0Tk

A A 4 4 A A A
Also now ied; = i+(@*i) = i*(Dyi + Dy, J + D, k) = Dy,
A AA A A a
j*dy = jeDp+i = D, j*dy = j*D*j = Dy, etc

1.14. For an antisymmetric dyadic A and the arbitrary vector b, show that 2b-A = A, X b.

From Problem 1.6(a), A = €jc; + €y¢, + €5¢5; and because it is antisymmetric, 2A = (A —A)
or
2a

A A A A A A

(eyc; + eycy + €5c3 — 1€ — cz€y — C3€5)
A A A A A A

= (€eje; — c€; + €yc; — €, + €305 — €3€3)

andso 2b-A = [(b*&)c; — (bc;)€ ] + [(b*E)ey, — (b* c) €] + [(b*Eg)cg — (b e3) &)

= [(€, X)) Xb+ (8 Xe) Xb+ (€3Xeg) Xb] = (A, XDb)
115. If D = 6i1+3ij +4kk and u = 2i+k v = 53, show by direct calculation
that D*(uXv) = (DXu)*v
Since uXv = (2‘i\+‘1;)><53'\ = 10?—-5?,
D-uxv) = (611+317 +4kk) - (=51 + 10k) = —307 + 40k
Next, DXu = (611+31§ +4kk)x @1 +k) = ~6ik +8kj —6ij+3ii
A A A A AA AA A A A
and OXu)ev = (311 —617 —6ik +8kj)+ 57 = —301 + 40k
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1.16. Considering the dyadic
D = 3ii—4if+ 231 +37 +kk
as a linear vector operator, determine the
vector r’ produced when D operates on

r = 41 + 27 + 5k

r = Der
A A A A A
= 12i +8j —81+2j + 5k
A A A .
= 41+ 107 + 5k Fig. 1-14

1.17. Determine the dyadic D which serves as a linearA vector operator for the vector
function a = f(b) = b+ bXr where r = zi +¥Jj + 2k and b is a constant vector.

In accordance with (1.59) and (1.60), construct the vectors

A A A A A A
u = (i) = i+iXr = 1i-2j+yk
v = f(j) = J+3iXr = 2zi+j—2zxk
A A A A A A
w = f(k) = k+kXr = —yi+aj+k
Then D =uit+vi+wk = (i —2j+tyk)i+@Eit+j—ok)j+(—yi+aj+kk
and a = Db = (by+bz—bay)l + (—bz+b,+ba)] + (by—byz+b)k

As a check the same result may be obtained by direct expansion of the vector function,

A A A A A A
a = b+bXr = bi+b,j+bk+ (bz—by)i+ (bx—b2)j+ (by—ba)k

L18. Express the unit triad €, ¢€,¢€, in terms of
'i\, j, k and confirm that the curvilinear triad
is right-handed by showing that €, x¢€, = €.

T

By direct projection from Fig, 1-15,

A N . ~ . a
e, = (cos¢ cosg)i + (cos¢sing)j — (sing)k "
A . L 2
e, = (—sing)i + (cosa)j
A . A s . A A
e, = (sing cose)l + (sin¢ sing)j + (cos p)k
and so Fig.1-15
A A A
i 3 k
A A . I3
e, X€ = COS$ cOS@ coS¢psing —sing
—sin 6 cos 8 0
. A . LA . a A
= (singcos8)i + (singsing)j + [(cos®6 + sin26) cosglk = e,

1.19. Resolve the dyadic D = 31i+4ik+63i+73j+10ki+ 2k j into its symmetric
and antisymmetric parts.
Let D =E+F where E=E, and F= —F,. Then
E= (1/2)p+0) = (U26TT+4Tk +4ki+67i+617+1457
+10ki+101k +2ki +25k)
AA AA A A A A AA AA AA
+8ij+7ik+3ji+7jj+ik+Tki+kj = E

AA
P
11

= 3
F = (1/2)b—Dp,) = (1/2)4ik —4ki+6j1—617+10ki—10ik+2kj—2jk)
AA A A A A A A AA Aé
= —317 -8 ik +371T -+ 3kT+kT = -F,
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1.20. With respect to the set of base vectors ai, a;, a; (not necessarily unit vectors), the set
al, a2, a% is said to be a reciprocal basis if a;-a’ = §;;. Determine the necessary rela-
tionships for constructing the reciprocal base vectors and carry out the calculations
for the basis
A A A A A A A A
b, = 8i+4j, b= —-1i+23+2k, b; =1+73 +k
By definition, a,+al=1, a,+al =0, azeal =0, Hence al is perpendicular to both a, and
a;. Therefore it is parallel to a, X a3, i.e. al = A(a, X ag). Since a;-al =1, a,*Aay,Xaz3 =1 and
A =1/(a,*a, X ag) = 1/[a,a5a5]. Thus, in general,
a8, X a, 2_113><al s a; X a,

al = ad =
[a,8,85]

= a2 =
[a,8085]° [a,a085]°

For the basis b;, by, b;, 1/A = b, *b, X by = 12 and so

b = (byxby/12 = (§—Kk)/4
B2 = (byXb)/12 = —1/3+ /4 + k/12
b3 = (b, Xby/12 = 21/3 — j/2 + 5k/6

INDICIAL NOTATION — CARTESIAN TENSORS (Sec. 1.9-1.16)

1.21. For a range of three on the indices, give the meaning of the following Cartesian tensor
symbols: Au, Bij, Rij, i Ty, a:b;Si;.
A;; represents the single sum A; = A, + A5+ Ag,.
B;;; represents three sums: (1) For i=1, By, + By + By3s.
(2) For i =2, By, + Byyy + Bogs.
(3) For i=3, By, + Bgyy + Bggs.
R;; represents the nine components R),, Ry, Ry3, Ry;, Roo, Ry3, B3y, Rgs, Rs.
a;T;; represents three sums: (1) For j =1, a,T); + apTy; + a3 Ty,
(2) For § =2, ayTy + ayTyy + a3 T,
(8) For j=38, a;T 3+ ayTo3 + a3zT3s.

a;b;S;; represents a single sum of nine terms. Summing first on i, @;b;S;; = @,b;S,; + asb;S,; +
a3b;S3;. Now summing each of these three terms on j,

aib]-Sij = albISn + albzslz + aleSm + 02b1521 + 02b2S22
+ ayb3Sy3 + a3 Sgy + a3byS3p + a3bsSy,

1.22. Evaluate the following expressions involving the Kronecker delta §; for a range of
three on the indices.

(@) 8; = 851+ 8y + 833 = 3

(®) 88y = 8138y + 835855 + 83385 = 3

(©) &ididn = 81818k + 828085 T 83838 = 3
(@) 885 = 88wk + 88k + 8igdap = ik

(€) 8yAy = 81y T 8g5lo + 8345 = Ay

1.23. For the permutation symbol ej; show by direct expansion that (a) eweny; = 6,
(b) €Ay = 0.

(a) First sum on 1, €ijk€kij — €1jk€k1j + €2ik€k2] + €37k€K3]
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Next sum on j. The nonzero terms are
ki = €izk€kiz T €13keki1z T €21keka1 T eogrekes T €gikekar T esokekaz
Finally summing on k, the nonzero terms are
€ijk€kij — €123€312 + e1326213 T earzeaer T e2ar€123 T egpoeasr T oemiera
= OO +EDHEDH +H EDED +F OO +F OO FH (DD = 6
(b) Summing on j and k in turn,
€00 = €010 T €pdaly T g A30
T ena0y0p 1 €)3013 T €9,050) T €5930505 + €3)330; + €3003a5

From this expression,

when @ = 1, €380, = a3 — aza, = 0
when 1 = 2, ep0;a, = a,0;3 — aza; =
when 7 = 3, 30,0, = a;a, — @y, = 0

Note that ¢;.a;a; is the indicial form of the vector a crossed into itself, and so aXa = 0.

1.24. Determine the component f. for the vector expressions given below.
(@ fi = euTh

fo = el = ensTis+ Ty = —Tig3+ Ty
(d) fi = e;,;b;— ¢;,;b;
fo = €910y F 9,205+ €535 — €1,28) — €9,909 — €353

(€g,1— €1,9)b) + (€g,3— €5,9)b

(e f; = Bijfj*
fo By fY + Baofy + Bofs

1.25. Expand and simplify where possible the expression Djxiz; for (a) Dy = Dy,
(b) Dy = —Dji.
Expanding, Dyzg; = Dyxx; + Dojaax; + Dgjaax;
= Dyyay%, + Dyg@y@y + Dygaaxg + Dogzoxy + Dogmomy
+ Dygwoy + Dgyxa%y + Daggwy + Dygzaag
(@) Dymz; = D)% + Doy(x9)? + Dgg(23)? + 2D 192125 + 2Dga@pmg + 2D 137,23
(b) Dyxwe; = 0 since D,y = —D,,, D,y = —Dy, etec.

1.26. Show that egerpq = 8ipdjq — 8igdp for (a)2=1, =q=2, p=3 andfor (b)i=q=1,
j=»=2. (It is shown in Problem 1.59 that this identity holds for every choice of
indices.)

(a) Introduce i=1, =2, p=38, ¢ =2 and note that since k is a summed index it takes on

all values. Then _
€ikekpq = €12kfk3z = €121€132 T €122€232 T €1zaeaaz = 0

and 8ip8iq — 8ig8pp = 813839 — 819853 = O

(b) Introduce 1= 1, 7= 2, p=2, qg=1, Then €ijk€kpq — €123€321 — —1 and 8ip81’q - 8iq8jp =
812801 — 3118 = L.

1.27. Show that the tensor Bui = €jxa; is skew-symmetric.
Since by definition of ¢;; an interchange of two indices causes a sign change,

By = ext; = —(eua) = —(Br) = —Bu
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1.28.

1.29.

1.30.

MATHEMATICAL FOUNDATIONS [CHAP. 1

If By is a skew-symmetric Cartesian tensor for which the vector b, = (§)¢,; B,
show that B, = .b,.

Multiply the given equation by ¢,, and use the identity given in Problem 1.26.

aidi = FepaisiaBi = F(858qk — 3pk8q)Bie = §(Bpq— Bgy) = $(Bpqt Bpg) = Byg

Determine directly the components of the metric
tensor for spherical polar coordinates as shown
in Fig. 1-7(b).

dx; dx;
92 = 55, 5o,
ordinates as shown in Fig, 1-16 (r = 64, ¢ = 6y, 6 = 65).
Then

Write (1.87) as and label the co-

z
) 2
Z; = 6y sin 6, cos 64
X, = 6y sin g, sin 6,
X3 = ) COS 6,
Fig.1-16
Hence
GEN . dxy dxy . .
—— = sing,cosd —— T 6 COS 8, COS 8 —— = —8;sinéysineg
a8, 2 3 a6, 1 COS @9 3 365 1 g S 3
9y . . 9y . dxy .
— = sing,sineg —— = 0)C086,sing —— = §;sing,cos8
36, 2 3 a6, 1 €OS 0y 3 96, 1 2 COS 3
i cos 6 i R ~—6, sin 8 aj—v—g = 0
86, 2 88, 1 2 984
. axi Bxi . . .
from which g¢g;, = 35 90 = sin2 g, cos? 6; + sin26,sin29; + cos2g, = 1
1 96y
dx; 0x;
gog = E 50—; = §%cos? 0, cos?0; + 6Fcos?, sin2gg + 62sinZ g, = 0%
dx; dx; 2 . . P 2 s
933 = 30, E = #ysin?6, sin? 95 + 67sin%6, cos?9; = oisin?e,

Also, 9,4 =0 for p+# q. For example,
B:ci axi
96, 96,

i

g1 = (sin 64 cos 63)(6; cos 84 COS 85)
+ (sin 6, sin 6;)(6, cos 8, sin 85) — (cos 6,)(8; sin 6,)

= 0

Thus for spherical coordinates, (ds)2 = (ds;)% + (6,)2(dsy)? + (8, sin 65)%(do3)2.

Show that the length of the line element ds
resulting from the curvilinear coordinate incre-
ment dg; is given by ds=1/gid6: (no sum).
Apply this result to the spherical coordinate
system of Problem 1.29.

Write (1.86) as (ds)?2 = g,qd6,ds, Thus for the
line element (dsy, 0,0), it follows that (ds)2 = g,4(ds;)?
and ds = Vg, do,. Similarly for (0, oy, 0), ds = Vg, dbs;
and for (0,0,ds;), ds =\ gs3de, Therefore (Fig. 1-17), Fig. 1-17

T rsin ¢ df
rdo
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(1) For (ds,,0,0), ds = do;, = dr
(2) For (0, ds,,0), ds = 6,de, = rdey
(3) For (0,0,dss), ds = ¢,sing, d9; = 7 sing do

1.31. If the angle between the line elements represented by (d6,, 0,0) and (0,dds, 0) is

denoted by 8,,, show that cosp,, = \/g__qu_\/g:
11 22

Let ds, = Vg,;d9; be the length of line element represented by (ds,,0,0) and ds, = V gy, do,
ox
be that of (0, de,, 0). Write (1.85) as d«; = 3‘9—i de,, and since (ds)2 = cos B, ds, ds,,
k

(ds)2 = dayda; = §;;dx;day
0x, dx, 0xy Iy dxg dxg
= — — — = — ——do,de, = de, do
39, 96, do, doy + 39, 98, do, doy + %, 602d 1 dbg 912d6; dby
do, dog 912

Hence using the result of Problem 1.30, cos 8,

= gl2_ —_— - .
ds; ds; Vg, Vg

1.32. A primed set of Cartesian axes Oxixsz: is obtained by a rotation through an angle
§ about the z; axis. Determine the transformation coefficients ai; relating the axes,
and give the primed components of the vector v = 181 + 0582 + 7565,
From the definition (see Section 1.13) gq; =

cos (x;, #;) and Fig. 1-18, the table of direction
cosines is

%y %y %3
x1 cos 6 sin ¢ 0
x5 —sin ¢ cos 6 0
x4 0 0 1

Thus the transformation tensor is

cos® sing 0
A = ~—sing cosé O
0 0 1

By the transformation law for vectors (1.94),

V] = av; = vycos6 + vgsing
vy = agw; = —v;sing + vy cos o
’ -— —_—

vy = ag; = vy

1.33. The table of direction cosines relating
two sets of rectangular Cartesian axes
is partially given as shown on the %3 3/5 —4/5 0
right. Determine the entries for the
bottom row of the table so that Ox{xix}
is a right-handed system. x5

%1 £ L3
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1.34.

1.35.

1.36.

1.37.
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The unit vector 3; along the x} axis is given by the first row of the table as 31 (8/5) e1 — (4/5) e2

Also from the table 3'2 = 33. For a right-handed primed system e3 = G'IXQQ, or
[(3/5)8, — (4/5) 8] X & = (~3/5)8, — (4/5)&, and the third row is | o | —4/5]—3/5 ] ﬂ
Let the angles between the primed and

. . . . . x, X9 X3
unprimed coordinate directions be given
by the table shown on the right. Deter- x| 135° 60° 120°
mine the transformation coefficients ay o 90° 450 450
and show that the orthogonality condi- 2
tions are satisfied. x4 45° 60° 120°

The coefficients a;; are direction cosines and
may be calculated directly from the table. Thus

-1z 12 @ -1/2
a; = o 1VZ o 12
Ve 12 —1/2
The orthogonality conditions a;a; = &5 require:

1. For j=lk=1 that a;ja, + ayay + asa3; =1 which is seen to be the sum of squares of
the elements in the first column.

2. For j=2, k=3 that a,98;3+ Gyya53 + a30a33 = 0 which is seen to be the sum of products
of corresponding elements of the second and third columns.

3. Any two columns “multiplied together element by element and summed” to be zero. The
sum of squares of elements of any column to be unity.

For orthogonality conditions in the form aja;; = §j, the rows are multiplied together
instead of the columns. All of these conditions are satisfied by the above solution.

Show that the sum A + uBy represents the components of a second-order tensor
if Ay and Bi; are known second-order tensors.

By (1.108) and the statement of the problem, A4, = amaq].A;q and B = apiaq]-B;,q. Hence
My + uBy = M%iaqulpq) + wlayaqByy) = api%io‘A;q + wBy)

which demonstrates that the sum transforms as a second-order Cartesian tensor.

Show that (Pix+ Pji+ Pjk) Titi®x = 3PijeiiTx.

Since all indices are dummy indices and the order of the variables x; is unimportant, each
term of the sum is equivalent to the others. This may be readily shown by introducing new dummy
variables. Thus replacing 1%, 7,k in the second and third terms by p, q,7, the sum becomes

Pwxwy, + Pogw,xqe, + Popa,x.x,
Now change dummy indices in these same terms again so that the form is

Pypxwimy, + Pgoapaw; + Pipxam, = 3Py xxm)

If Bj; is skew-symmetric and A;; is symmetric, show that A;By; = 0.
SinCe A” = A]t and Bi] = —B, A B A BJI or A”Bl] + A]lB]l = A”B” + ququ = 0.

it
Since all indices are dummy indices, A,,B,, = A ;Bi; and so 24;B;; =0, or A;B; =0
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1.38. Show that the quadratic form Dixix; is unchanged if D;j; is replaced by its symmetric
part Dgj.
Resolving D;; into its symmetric and anti-symmetric parts,
Dy = Dgj + Dup = §(Di;+ Dy) + LDy — Dy)

Then D jyai; = %(Di]-+Dﬁ)xixj = 1(Dywa;+ Dygxex,) = Dywa;

1.39. Use indicial notation to prove the vector identities
(1) ax (bXc) = (a*c)b — (a*b)e, (2) axXbra =0
(1) Let v=bXc. Then v; = eubjc; and if aXv=w, then

W, = €pqiQqeijidiCk

(8,8qk — Spk8qi)agbick  (see Problem 1.26)

aqb,cq — agbyc,

(aqeq)b, — (agby)e,
Transcribing this expression into symbolic notation,
w = aX(bXe) = (a*c)b — (a+b)c

(2) Let aXb=v. Thus v; = ;0;b,; and if A =v-a, then A= gulaa;,). But €5 is skew-
symmetric in 7 and j, while (a;a;b;) is symmetric in ¢ and j. Hence the product e;a;a;5;
vanishes as may also be shown by direct expansion.

A= eijlaiajbl + emaiajbz + eijaaiajba
= (32,0309 T €9310983)0; + - -
= (—aq.a3 + axaz)b; + (0)b, + (0)by = 0

1.40. Show that the determinant
An A Ajg

detA; = |[Axn Ay Ay
Az Az Ass
may be expressed in the form €A1 As;Ask.

From (1.52) and (1.109) the box product [abc] may be written

a; Gy ag
AN = a*bXc = [abc] = egpabie, = by by by
1 € €3

If now the substitutions a; = A;;, b; = A, and c¢; = A are introduced,
A= €ijkaibjck = eijkAliA2jA3k

This result may also be obtained by direct expansion of the determinant. An equivalent expression
for the determinant is e;;.A; A ;34 .

1.41. If the vector v; is given in terms of base vectors a,b,c by vi = aai+ Bbi + y¢,
eijk'vibji

show that o« = .
€parpboCr

v, = aa; + Bb; + veq
vy = aly + Bby + yey
vy = ab@g+ Bby + yeg
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vy by ¢
vy by ¢
vy by 3

By Cramer’s rule, a« = ———— and by (1.52) and (1.109), a = .
a, by ¢ epar®pbeCr

ei]'kvib]'ck

az by ¢

ag by ¢4

. . €5k KV iCy €ij @b vk
Likewise £ = = oo’ ¥~ i o,
€pqrlpPqCr €pqrlpYqCr

MATRICES AND MATRIX METHODS (Sec. 1.17-1.20)

142, For the vectors a = 31 +4k, b = 27— 6k and the dyadic D = 377+ 21k -
4j3 —5kj, compute by matrix multiplication the products a*D, D-b and a<D-b.

3 0 2
Let a+D =v; then [vy,vgv3] = [3,0,4]| 0 —4 o0 | = [9,—20,6].
0 —5 0
w, 3 0 2 —12
Let D*b=w; then | w, [ =0 —4 0 2| = ~8
wg 0 -5 0] —6 —10
0
Let a*D*b=v+b=2x; then [A] = [9,-20,6]] 2 | = [-76].
—6

1.43. Determine the principal directions and principal values of the second-order Cartesian
tensor T whose matrix representation is

3-1 0
Ts] = |-1 3 0
0 0 1
From (1.132), for principal values A,
3—x -1 0
-1 8—x 0 = @1-N[@=N2—1 = 0

0 0 1—2x

which results in the cubic equation A3 — 7TA2 4+ 14A — 8 = A —1)(A—2)(A —4) = 0 whose principal
values are Ay =1, Ay =2, Ay = 4.

Next let n{V’ be the components of the unit normal in the principal direction associated with
Ay = 1. Then the first two equations of (1.137) give 2nV —=n{V = 0 and —n/V+ 2ng’ = 0,
from which #{¥ = 2{" = 0; and from nn; = 1, i = =1,

For A =2, (1.181) yields »%® —n® =0, —n$® + néz) =0, and -n¥ =0. Thus

n(® = n{® = x1/V/2, since nm; = 1 and ns® = 0.

For Agy = 4, (1.131) yields —n'® — n{® =0, —n{» — néa) =0, and 3nf» = 0. Thus
ng? =0, n¥ = P = F1/V/e.

The principal axes «} may be referred to the original axes x; through the table of direction
cosines
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x Xy x5
¥ 0 0 *1
% *1/V2 *1/V/2 0
¥ +1/V2 *1/V2 0
from which the transformation matrix (tensor) may be written:

0 0 +1 0 0 *1

A = | x1//2 12 0 or a; = | x1//2 =12 0

FINVZ =1/V2Z 0 SSVAVERRES VYO R

1.44. Show that the principal axes determined in Problem 1.43 form a

orthogonal axes.

Orthogonality requires that the conditions a;ay = &

be satisfied.
nn; =1 was used in determining the a;;, orthogonality is automatically satisfied for

right-handed set of

Since the condition
j=k.

Multiplying the corresponding elements of any row (column) by those of any other row (column)
and adding the products demonstrates that the conditions for j + k are satisfied by the solution

in Problem 1.43.
Finally for the system to be right-handed,

*
A XA® = AW, Thus Ty o3
& A
Ly
A A A N
€ (] €3 AN
N
W2 V2 o) = G+DE = § N =3
N
—1VZ 1WVZ o N o/t ,
i A
As indicated by the plus and minus values of - ' g
a;; in Problem 1.43, there are two sets of prin- /4
cipal axes, x’:‘ and x}*. As shown by the sketch Do o
both sets are along the principal directions 3 (g 2
with «¥ being a right-handed system, x%* a
left-handed system. Fig. 1-19

1.45.

Show that the matrix of the tensor Ti; of Problem 1.43 may be put into diagonal

(principal) form by the transformation law Th = ain0iqToe, (0or in matrix symbols

T* = cATAT).

0 0 1 3 -1 0o

(] = V2 12 of-1 3 ollo
| ~V2 vz o 0 0 141

o 0 1o 1v/2 —1/n/2

= V2 V2 ollo 12 1n/2
[~2v2  2v2 o |1 0 0

V2 —1n/2
V2 102
0 0
100
= o2 o0
0 0 4
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1.46.

1.47.

1.48.
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Prove that if the principal values A, A2, Asy of a symmetric second-order tensor
are all distinct, the principal directions are mutually orthogonal.

The proof is made for Ay, and A3, For each of these (1.129) is satisfied, so that Tijngz) =
(2) (3)

Ayn;” and T”njz” = Ayni?. Multiplying the first of these equations by n;~’ and the second
by n{®
LI @2, (3 _ (2)(3)
Tyn;"ni™ = Agyniny
3@ _ (3), (2)
Tyn;" ny® = Agyn;“'n;

Since T;; is symmetric, the dummy indices i and j may be interchanged on the left-hand side of
the second of these equations and that equation subtracted from the first to yield

@@ _
A —Aayni mg = 0

Since A(g) # A(3), their difference is not zero. Hence =
directions to be perpendicular.

(2)

i nf}) = 0, the condition for the two

Compute the principal values of (T)? of Problem 1.43 and verify that its principal
axes coincide with those of T.

3 -1 o] 8-1 o0 10 ~6 0
(T2 = | -1 38 of-1 8 o| = |-6 10 o0
0o 0o 1) 0 o 1 0 0 1

The characteristic equation for this matrix is
10 — A —6 0
-6 10—x 0 = (1-N[10—-22—36] = 1—NA—4)A—16) = 0
0 0 1-A

from which Ay =1, Ay =4, Ay = 16. Substituting these into (1.131) and using the condition
nn; =1,

) _pp () —
For >\( =1 gnl 61"2 =0 or n(l) — n(l) =0 ,n(l) = =*1
n = 5 1) 1 __ 1 2 s '3 -
—6n;’ + 91,7 = 0
(2 _ @, (2) —
6n) 6n,” = 0
_ (2 2 _— (2) — (2 — (2) —
For A =4, —6n1" + 6n," = 0 or n¥ =n" = *1V/2, ny= =0
—3n§2) =0
—en(® _ an(d® —
6n; 6n,> = 0
For A3, = 16, -6 —6n® = 0p or ¥ =-2®=x1/V/2, 2P =0
(3) 1 2 1 2 3
—15n¥ = 0

which are the same as the principal directions of T.

Use the fact that (T)2 has the same principal directions as the symmetrical tensor T
to obtain \/T when

5 -1 -1
T = -1 4 0
-1 0 4

First, the principal values and principal directions of T are determined. Following the procedure
of Problem 1.43, the diagonal form of T is given by

3 00
0 4 0
0 0 6
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with the transformation matrix being

V3 143 13
la] = 0 V2 —1n/2
—2/V6 1n6 116

V3 0 o0
Therefore W = 0 2 0 and using [a;] to relate this to the original axes by the
0 0 Ve,

transformation VT = A,\/T* A, the matrix equation is

1/vs o -2n/6||V3 o ol 13 13 13
WT;1 = |1V/3 1vV2Z 16 0 2 0 0 1Nz —1/V2
V38 —1V2 16 || o o Ve[ -2V 106 16

V2 +4 V2 —2 V2 -2 5.414 —0.586 —0.586

= % VZ—2 VZ+Ve+1 Ve—ve+1| = .402| —0.586 4.863 —0.035
6

V-2 V2z—+Ve+1 Vz+Ve+1 —0.586 —0.035 4.863

CARTESIAN TENSOR CALCULUS (Sec. 1.21-1.23)

1.49. For the function X = Aiwir; where Aj; is constant, show that da/ox: = (A + Aw)z;
and 92:\/dxidx; = Ay + A Simplify these derivatives for the case Ay = Aj.

Consider—%——A %m +Aa:% S'nceai—b‘ it 1 enthatﬂ—A:c+Ax"
oz, g, I 5 g dm, s se oxy, Vi L
2 dx;
(Aw;+ Az)a; Continuing the differentiation, fﬁ—; = (Ag+Ap) 3 = A + Ay IE Ay =4y,
p Ok D
oA %A

Fr. = 2A;;x; and 52, 97

= 2 ke

1.50. Use indicial notation to prove the vector identities (¢) Vv X V¢ = 0, (b) v+ V xa = 0.

(a) By (1.147), V¢ is written ¢; and so v =V X Vg has components v; = €06 = €9,k But
e is anti-symmetric in j and k, whereas ¢ ;; is symmetric in j and k; hence the product
€ijk®,k; vanishes. The same result may be found by computing individually the components of
v. For example, by expansion vy = e;g36,93 T €1306,32 = ($,93— ¢,32) = O.

(b) V . V Xa=\N= (ei]'kak,j),i = Gijkak’ﬁ = 0 since a,m-j = ak,ﬁ and €iik = €jike

1.51. Determine the derivative of the function X = (x1)? + 2z1x2 — (x3)> in the direction
of the unit normal a = (2/7)&, — (3/7)é; — (6/7)&; or n = (2& — 3&;— 6&:)/17.

The required derivative is N Vieh = A ;7. Thus
m '

D= (2my+ 2092 — (2m)E + @29)E = 2wy + 23y + Bxy)
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1.52.

1.53.

1.54.
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If A; is a second-order Cartesian tensor, show that its derivative with respect to
Zr, namely Ak, is a third-order Cartesian tensor.

For the Cartesian coordinate systems »; and »;, #; = a;x; and 0x;/dx; = a;. Hence
) AL 9 34 ,q 0%m

A = = —(a,84,,) = a,a;
ij.k 1 ’ i ip“iq
J amk axk piq" " pq P

o a; @ QemA
’ ip“iq“ km ,m
dx,, Oxk r ra

which is the transformation law for a third-order Cartesian tensor.

If r?=xw; and f(r) is an arbitrary function of r, show that (a) V(f(r)) = f'(r)x/r,
and (b) V*(f(r)) = f(r) + 2f’/r, where primes denote derivatives with respect to r.

2
(a) The components of Vf are simply f;. Thus f;= of or. ; and since 802 _ 2r Ir 28;x; it
f 3 ar Bxi ax] ax]-
or _ % _O0for _ o
follows that 52; = Thus f;= 5 oa flai/r.

' 7] 2;%; , 3 x;%; 2f’
®) Vi =fu= Gl =5+ -5 )=+

Use the divergence theorem of Gauss to
show that L xzm; dS = V§; where n;dS

represents the surface element of S, the
bounding surface of the volume V shown
in Fig. 1-20. =z; is the position vector of
n;dS, and n; its outward normal.

By (1.157),
f xin]- ds = f xi,j 'A%
S \4
\4
= 8,V Fig.1-20

1.55. If the vector b = ¥ Xv, show that f AbnidS = f AibidV where M= A(x) is
\ 4

a scalar function of the coordinates.

Since b= V Xv, b; = ¢;v,; and so

f )\bmi dsS = f €ijk )\'Uk’j'ni ds
S S

i

f e (Mvi,5),:dV by (1.157)
\4

i

f (eijk }\,ivk‘j + €ijk )\vk,ji) A4
\4

it

f A,:0;dV  since Aejvi,;i =0
v
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MISCELLANEOUS PROBLEMS
1.56. For the arbitrary vectors a and b, show that
X = (axb)-(axb)+(a-b3 = (ab)
Interchange the dot and cross in the first term. Then
A = a*bX(aXb) + (a-b)a-b)
= a-+[(b*b)a— (b-a)b] + (a-b)a+b)
(a*a)b-b) — (bea)(a-b) + (a*b)(a+b)
= (ab)?

I

since the second and third terms cancel.

157. If &« = o Xu and Vv = o X v, show that d%(uXv) = o X (uXV).

(a) In symbolic notation,

d%(uXv) = uXv+uxXvy = (@Xu)Xv+ uX(@Xv)
= (vea)u — (vewa + (u*v)e — (u-a)y
= (vea)u — (Uurae)v = a X mXv)

T . d
(b) In indicial notation, let d—t(uXv) = w. Then
_ d . . .
w; = dt (Gijkujvk) = UK T Uil
. * S —
and since %; = gty ANd Vg = €mpmVn,
Wi = €jkeipg@paqVi T €ijkekmn®i®mVn =  (€ijkClemn — €inkekmi) UiomVn
and using the result of Problem 1.59(a) below,
Wy = (8imbjn — 8in8jm — SimSjn T 848 mp)Ujomy
= (8;i8mn — SindimUjomVn =  €imkeiniOmVp

which is the indicial form of & X (u Xv).

Smp qu Sms

158. Establish the identity e ¢... = |8 Om s
Srp Srq Srs
Ay A Agg
Let the determinant of A;; be given by detA = |Ay Ay Ay|. An interchange of rows
or columns causes a sign change. Thus Ay Agy Agg
Ag Ay Ay Ay Ay Ay
Ay Ay Ay = |Ap A Ay = —detd
Az Az Asg Azy Az Ag

and for an arbitrary number of row changes,
A ml Am2 A m3
Ay Apy Ay = emprdetA
A r1 A r2 A r3
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or column changes,
Alp Alq Als
Agp A2q A2s = €pqs det A
Agp Agq Ags
Hence for an arbitrary row and column interchange sequence,
Amp Amq Ams
A Anq Ans = €mnrépgs det A
A A A

™ rq Ts

np

When A;; = §;;, det A =1 and the identity is established.

1.59. Use the results of Problem 1.58 to prove (@) epgsesnr = 8pndqr — 8prSan, (D) epasesar = —28r-
Expanding the determinant of the identity in Problem 1.58,
€pgstmnr — Omp(Sngdrs — (Snssrq) + qu(snssm - 8np8rs) + sms(snpsrq — 8,48p)
(a) Identifying s with m yields,
epgstsnr = Oop(SngBrs — SnsSrq) + 85q(8nsSrp — Snpbrs) + 855(SnpSrg — Sngdrp)
= 8,p8nq — 8pudrq T 8qnbrp — Sppdgr T 385,87 — 385484,
= Spprq = 8ngdmp
(b) Identifying ¢ with = in (a),

pastsar = Sqpdrq T Sqabrp = 8pr — 38, = 28,

1.60. If the dyadic B is skew-symmetric B - —B,, show that B,Xa= 2a-B.
Writing B = b, €; + by&, + by8; (see Problem 1.6),
B, = by X8 + by X8 + by X8
and B, Xa = (blxal)Xa + (b2X32)Xa+ (by X&) X a
= (a'bl)sl - (a'sl)bl + (a~by)e, — (a-@z)bz + (a-by) & — (3'33)1’3

= a-° (bl'él + bz‘e\z + b333) - a°* (‘e\lbl + 32b2 + 33b3)

= a*B —a*B, = 2a°B
1 0 -1
1.61. Use the Hamilton-Cayley equation to obtain (B)* for the tensor B = 0 3 0
Check the result directly by squaring (B)>. -1 0 -2
The characteristic equation for B is given by
1—2 0 -1
0 3—2a 0 = —(—-22-6+9 = 0
-1 0 -2 — 2

By the Hamilton-Cayley theorem the tensor satisfies its own characteristic equation. Hence
()3 — 2(B)2 — 6B 4+ 91 = 0, and multiplying this equation by B yields (B)* = 2(B)® + 6(B)2 — 9B or
(8)* = 10(B)2 + 38 — 181. Hence
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1.62.

1.63.

1.64.

1.65.

1.66.
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2 0 1 3 0 -3 18 0 0 5 0 7
®* = 10[0 9 0] + 0 9 o} — 0 18 0 = 0 81 0
0 5 -3 0 —6 0 0 18 7 0 26

Checking by direct matrix multiplication of (B)2,

2 0 1 2 0 1 5 0 7
(Bt = 0 9 o0 0 9 o0 = 0 8 0
1 0 5 1 0 5 7 0 26

Prove that (a) As, (b) AijAi;, (¢) €ixexpAip are invariant under the coordinate trans-
formation represented by (1.103), i.e. show that A= Aj, ete.

(@) By (1.108), A;; = apiaqu;q. Hence A; = apiain;q = Squ;,q = A;,p = Al
(b) Aiinj = apiaqu;qamianjAlmn = spmsan;)qA;nn = A;qA;q = AIiJ'A{J
(@ eijreniplip = eijkekjpa'mianpA:nn = (8;58jp = 8ipdi)UmiGnpAimn

= (‘Smn_smnsjj)A;nn - (Smjsnj_smnsjj)A;nn = ijkekjnA':nn

Show that the dual vector of the arbitrary tensor T; depends only upon T'; but that
the product T';S;; of T; with the symmetric tensor S;; is independent of T'ij.

By (1.110) the dual vector of Ty is v; = €5 Tj, or v; = e (Tjry + Te) = s iy since
e Ty = 0 (e is anti-symmetric in j and k, T, symmetric in j and k).

For the product Ty;S;; = TSy + T;nS;;. Here Ty;nS; =0 and TyS; = Tyjp Sy
Show that D: E is equal to D-+E if E is a symmetric dyadic.

Write D= D;;6,8; and E=E_ &8, By (1.81), D:E=DyE_ (€ €,)¢ ¢,). By (1.35),

D E=DyE, (& )& * &) =D;;E, (& 8)(§8) since E,, =E,,.
role of dummy indices p and ¢ in this last expression, D**E = Dijqu(é\]- . Gq)(é\i <)

Now interchanging the

Use the indicial notation to prove the vector identity v X (axb) = b-vVa—b(V-a)+
a(v-+b) —a-ybh.
Let V X (aXb) = v; then v, = e, 04a;b or
vy = epaicij (40),q = epaiij (25,06 T abr,q)
= (8pi8qk — Spkdq)(@j,qbr T asbi,g) = apqbg — @q,qb, T apbeq — agby g

Hence v = b-Va—b(V+a)+ a(Veb)—a+ Vb,

f nx (axx)dS = 2aV
s
The

By means of the divergence theorem of Gauss show that

where V is the volume enclosed by the surface S having the outward normal n.
position vector to any point in V is x, and a is an arbitrary constant vector.

In the indicial notation the surface integral is f €qpiTlp€ije @ dS. By (1.157) this becomes
s

the volume integral f (eqpi€iji @;%x),p AV and since a is constant, the last expression becomes
v
f €api€ijk @ T p AV = f (84i8pk — Sqi Sppajxy , dV = f (@gxy,p, — Gp%q, ) AV
1% v \'%

= f (@g8pp — ap8qp) dV = f (Bag—ay) dV = 2a,V
v v




42

1.67.

1.68.

1.69.

1.70.

1.71.
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For the reflection of axes shown in Fig. 1-21 show that the transformation is
orthogonal.

From the figure the transformation matrix is

1 0 0
[aij] - 0 —1 0
0 0 1

The orthogonality conditions a;ay = 8 or ajay = S
are clearly satisfied. In matrix form, by (1.117),

1 0 0 1 0 o0 1 0
0 -1 0 0 -1 0 =
0 0 1 0 0 1 0 0 1 Fig.1-21

Show that (IXv):D = vXxD.
AA AA AA A A A
IXyv = (ii+jj+kk)X (vi+v,j+vk)
= i(vyk —v,i) + i(—v;k+v,i) + k(v,i— v,i)
A A A A A A
= (vXi)i+ (vX33+ vXk)k = vXI

Hence (IXv)*D = vXI1*D = v XD.

Supplementary Problems

A A A A A . A

Show that u = i+j—k and v = i—j are perpendicular to one another. Determine w so
A A A

that u, v, w forms a right-handed triad. Ans. w = (—1/\/5)( i+j+ 2k)

Determine the transformation matrix between the u, v,{;\v axes of Problem 1.69 and the coordinate

directions. B
1/V/3 1/V8 —1/V/3
Ans. [ay] = V2 —1//2 o
-1V6 —1/6 —21/6

Use indicial notation to prove (a) V+x =3, () VXx =0, (¢) a* Vx = a where x is the position
vector and a is a constant vector.

5 -1 3
Determine the principal values of the symmetric part of the tensor 7T, = 1 —6 —6
Ans. Ny = 15, X2y =5, A5y, =10 -3 —18 1



CHAP. 1]

1.73.

1.75.

1.76.

1.77.

1.78.

1.79.

1.80.

1.81.
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730
For the symmetric tensor T;, = 3 7 4 determine the principal values and the directions
of the principal axes. 0 4 7
£31 Lo T3
¥ —3/5V/2 12 —4/5/2

Ans. Ay =2, Mgy =T, A3y =12,

x4 4/5 0 —3/5
w3 3/5V/2 1/V2 4/5v2

Given the arbitrary vector v and any unit vector €, show that v may be resolved into a component
parallel and a component perpendicular to €, i.e. v = (v+€)e+&X (v X €).

If Vev=0, VXv=w and V Xw=—v, show that V2v=¥V.

Check the result of Problem 1.48 by direct multiplication to show that VTyT=T1.

3 2 0
Determine the square root of the tensor B = [ 2 3 0
0 0 9
305+ 3(/5-1) o
Ans. VB = | 1V6-1) 1(/5+1) 0
0 0 3

Using the result of Problem 1.40, detA = ¢;;.4;;45;43, show that det(AB) = detA detB.
Verify that ((I) 63pvp = V3, (b) SSiAJ'i = AJ-3, (C) aijei,-k = 0, (d) 3,;25]‘3.41;]‘ = A23.

Let the axes Ow] xéx; be related to Oz, xs2x5 by the table

a o @3
o 3/5V/2 V2 4/5\/2
@y 4/5 0 —3/5

x5 —3/5V/2 1/V?2 —4/5v/2

(a) Show that the orthogonality conditions a;8; = 8 and @ .0, = 8,; are satisfied.
(b) What are the primed coordinates of the point having position vector x = 2€, — €;?

(¢) What is the equation of the plane x; — z, + 3¢ = 1 in the primed system?
Ans. (b) (2/5V/2, 11/5, —2/5\/2) (¢) V22| — a5 — 2/225 = 1

Show that the volume V enclosed by the surface S may be givenas V = } f V(xex)*h dS where
S

x is the position vector and n the unit normal to the surface.

Hint: Write V = (1/6) f (w@y), m; dS
and use (1.157). F




Chapter 2

Analysis of Stress

21 THE CONTINUUM CONCEPT

The molecular nature of the structure of matter is well established. _In _numerous
investigations of material behavior, however, the individual molecule is of no concern and

“only” the behavior of ‘the materlal as a whole is deemed important. For these cases the
observed macroscopic ‘behavior i is usually ¢ explained by' disregarding molecular considerations
and, instead, by assuming the material to be continuously distributed throughout its volume
and to completely fill the space it occupies. This continuum concept of matter is the
“fundamental postulate of Continuum Mechanics. Within the limitations for which the
continuum assumption is valid, this concept provides a framework for studying the behavior

of solids, liquids and gases alike.

Adoption of the continuum viewpoint as the bas1s for the mathematical description of

materlal behav1or means that field quantltles such as stress and dlsplaeement are expressed )

as p1ecew1se contmuous functlons of the space coordlnates and tlme

2.2 HOMOGENEITY. ISOTROPY. MASS-DENSITY
A homogeneous material is one having identical propertles at all points. With respect

to some property, a material is zsotromc if that property is the same in all directions at a

point.” A A material is called a an_zsgotrop@giwnﬁ respect to tk those propertles which are d1reetlpna1
at a pomt T

The concept of density is developed from
the mass-volume ratio in the neighborhood
of a point in the continuum. In Fig. 2-1 the
mass in the small element of volume AV is
denoted by AM. The average density of the
material within AV is therefore

Pravy — %]IIV/{ (21)
The density at some interior point P of the
volume element AV is given mathematically
in accordance with the continuum concept by
the limit,

AM _ dM

po= lm~y = av_ (2.2)
Mass-density p is a scalar quantity. Fig. 2-1

44




CHAP. 2] ANALYSIS OF STRESS 45

23 BODY FORCES. SURFACE FORCES

Forces are vector quantities which are best described by intuitive concepts such as push
or pull. Those forces which act on all elements of volume of a continuum are known as
body forces. Examples are gravity and inertia forces. These forces are represented by the
symbol b; (force per unit mass), or as p; (force per unit volume). They are related through
the density by the equation

pbi = pi or pb =p (2.3)

Those forces which act on a surface element, whether it is a portion of the bounding
surface of the continuum or perhaps an arbitrary internal surface, are known as surface
forces. These are designated by f; (force per unit area). Contact forces between bodies
are a type of surface forces.

P2

-

24 CAUCHY’S STRESS PRINCIPLE. THE STRESS VECTOR

A material continuum occupying the region R of space, and subjected to surface forces
fi and body forces b;, is shown in Fig. 2-2. As a result of forces being transmitted from
one portion of the continuum to another, the material within an arbitrary volume V
enclosed by the surface S interacts with the material outside of this volume. Taking n;
as the outward unit normal at point P of a small element of surface AS of S, let Af; be the
resultant force exerted across AS upon the material within ¥V by the material outside of
V. Clearly the force element Af; will depend upon the choice of AS and upon #ni. It should
also be noted that the distribution of force on AS is not necessarily uniform. Indeed the
force distribution is, in general, equipollent to a force and a moment at P, as shown in
Fig. 2-2 by the vectors Afi and AM..

x3

a™

Fig. 2-2 Fig. 2-3

The average force per unit area on AS is given by Afi/AS. The Cauchy stress principle
asserts that this ratio Afi;/As tends to a definite limit df;/dS as AS approaches zero at the
point P wh11e at the same time the moment of Aft about the pomt P vanishes in  the 11m1t1ng

process The resulting vector df:/dS (force per ‘unit area) is called the stress wvector t""
‘and is shown in Fig. 2-3. If the moment at P were not to vanish in the limiting process,
a couple-stress vector, shown by the double-headed arrow in Fig. 2-3, would also be defined
at the point. One branch of the theory of elasticity considers such couple stresses but
they are not considered in this text.
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Mathematically the stress vector is defined by

(;\,) . . Afi _ df;
tvo= lim3s = @

D — ooaf_df
or tW = Im3s T & (2.4)

The notation tﬁg’ (or t"A”) is used to emphasize the fact that the stress vector at a given
point P in the continuum depends explicitly upon the particular surface element AS chosen
there, as represented by the unit normal n; (or n). For some differently oriented surface
element, having a different unit normal, the associated stress vector at P will also be
different. The stress vector arising from the action across AS at P of the material within
V upon the material outside is the vector —t§'A". Thus by Newton’s law of action and
reaction, R . N .
—t§“) = t{—» or —tw = t-n) (2.5)

The stress vector is very often referred to as the traction vector.

25 STATE OF STRESS AT A POINT. STRESS TENSOR

At an arbitrary point P in a continuum, Cauchy’s stress principle associates a stress

vector t§'A‘) with each unit normal vector n;, representing the orientation of an infinitesimal
surface element having P as an interior point. This is illustrated in Fig. 2-3. The

totality of all possible pairs of such vectors tig’ and n; at P defines the state of stress at that
point. Fortunately it is not necessary to specify every pair of stress and normal vectors
to completely describe the state of stress at a given point. This may be accomplished by
giving the stress vector on each of three mutually perpendicular planes at P. Coordinate
transformation equations then serve to relate the stress vector on any other plane at the
point to the given three.

Adopting planes perpendicular to the coordinate axes for the purpose of specifying
the state of stress at a point, the appropriate stress and normal vectors are shown in
Fig. 2-4.

Fig. 2-4

For convenience, the three separate diagrams in Fig. 2-4 are often combined into a
single schematic representation as shown in Fig. 2-5 below.

Each of the three coordinate-plane stress vectors may be written according to (1.69) in
terms of its Cartesian components as

R a A A n
( A (
tler = V8 + 1208 + 18 = t°U§;
A ~ A A A
A A
te) = g L tEE, 4t = tf (2.6)

A A A A A
. A (e) A ( A (ez) A
te) = o8 + 158 + 18 = t;*§;
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Z3

\ (/\ y

e
t‘i x
x, 1

Fig. 2-5 Fig. 2-6

The nine stress vector components, .
1& = g (2.7)

¥
are the components of a second-order Cartesian tensor known as the stress temsor. The
equivalent stress dyadic is designated by Z, so that explicit component and matrix rep-
resentations of the stress tensor, respectively, take the forms

g g

11 12 ¢

13 1
2 = T % T3 or [oij] = Ty Ty Oy (2.8)

ag g

32 33

Pictorially, the stress tensor components may be displayed with reference to the
coordinate planes as shown in Fig. 2-6. The components perpendicular to the planes
(0,1 999r 03,) are called normal stresses. Those acting in (tangent to) the planes (0 ,,0,,,0,,
Oy 0aps 05,) are called shear stresses. A stress component is positive when it acts in the
positive direction of the coordinate axes, and on a plane whose outer normal points in one
of the positive coordinate directions. The component o, acts in the direction of the jth
coordinate axis and on the plane whose outward normal is parallel to the ith coordinate
axis. The stress components shown in Fig. 2-6 are all positive.

2.6 THE STRESS TENSOR — STRESS VECTOR RELATIONSHIP

The relationship between the stress ten-

sor o, at a point P and the stress vector t§'A')
on a plane of arbitrary orientation at that
point may be established through the force
equilibrium or momentum balance of a small
tetrahedron of the continuum, having its
vertex at P. The base of the tetrahedron
is taken perpendicular to ni;, and the three
faces are taken perpendicular to the coor-
" dinate planes as shown by Fig. 2-7. Des-
ignating the area of the base ABC as dS, the
areas of the faces are the projected areas,
dS) = dSn, for face CPB, dS:=dSn, for
face APC, dS; = dSns; for face BPA or
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dS; = dS(n-e) = dScos(n,&) = dSn (2.9)

The average traction vectors —t;"‘é") on the faces and t;"‘f‘) on the base, together with the
average body forces (including inertia forces, if present), acting on the tetrahedron are
shown in the figure. Equilibrium of forces on the tetrahedron requires that

O dS — t1E dS, — 59 dS, — 1 dS, + pb¥dV = 0 (2.10)

If now the linear dimensions of the tetrahedron are reduced in a constant ratio to one
another, the body forces, being an order higher in the small dimensions, tend to zero more
rapidly than the surface forces. At the same time, the average stress vectors approach
the specific values appropriate to the designated directions at P. Therefore by this limiting
process and the substitution (2.9), equation (2.10) reduces to

tDdS = tE&0mdS + tEn,dS + tE ngdS = & n;dS (2.11)

Cancelling the common factor dS and using the identity ¢{* =0, (2.11) becomes
£ = om, or t® =id-% (2.12)

Equation (2.12) is also often expressed in the matrix form
[t(ly)] = [nlk] [akj] (213)
which is written explicitly
011 012 013

(B, 60, 857) = [ ma,ma] [ on Om O (2.14)

93 %3 Jg3
The matrix form (2.14) is equivalent to the component equations
tgﬁ) = Moy, + Nyo, + Nyoy,
t;a) = M0, + N,0,, + N0, (2.15)

A
(n) _
ts" = N0y + Mooy, + Nyog,

2.7 FORCE AND MOMENT EQUILIBRIUM. STRESS TENSOR SYMMETRY

Equilibrium of an arbitrary volume V
of a continuum, subjected to a system of
surface forces tﬁ'A‘) and body forces b; (in-
cluding inertia forces, if present) as shown
in Fig. 2-8, requires that the resultant force
and moment acting on the volume be zero.

Summation of surface and body forces
results in the integral relation,

ftgf-)ds +fpbidv S
S \%4

or (2.16)
ftPas + { pav = o
S \4

Replacing t;™ here by o,n, and converting

the resulting surface integral to a volume

integral by the divergence theorem of Gauss %y

(1.157), equation (2.16) becomes Fig. 2-8
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f(aﬁ,j+pbi)dV = 0 or f(v-z+pb)dv = 0 (2.17)
\'4 \4

Since the volume V is arbitrary, the integrand in (2.1?7) must vanish, so that

aji,'+Pbi =0 or V:Z+4+pb =20 (2.18)

J
which are called the equilibrium equations.

In the absence of distributed moments or couple-stresses, the equilibrium of moments
about the origin requires that

j; eijkxjt,i") s + I] e“kxjpbk av. = 0
or (2.19)

fxxt('/‘\)dS—l-fopde = 0
s v

in which z; is the position vector of the elements of surface and volume. Again, making

the substitution tg'A') = o,n, applying the theorem of Gauss and using the result expressed

in (2.18), the integrals of (2.19) are combined and reduced to

§ apon@ =0 or  f T.av =0 (2.20)
\ 4 \ 4
For the arbitrary volume V, (2.20) requires

ex%e = 0 or  Z, =0 (2.21)

Equation (2.21) represents the equations o = g,,, or in all

12 7 %212 T23 7 O399 O3

o, = o, (2.22)

ij ji

which shows that the stress tensor is symmetric. In view of (2.22), the equilibrium equations
(2.18) are often written

o;;+pb, = 0 (2.23)
which appear in expanded form as
do,, 6012 6013 .
o T om T e, TP =0
do do do
Exi:+%2;+ﬁ+Pb2 = 0 (224)
6‘731 doy, doyg
73971 + 6_962 + 6—96'3 + pba = 0

28 STRESS TRANSFORMATION LAWS

At the point P let the rectangular Cartesian
coordinate systems Pz,z.xs and Pzizsx: of Fig.
2-9 be related to one another by the table of
direction cosines

x, 2y 3
!’

Xy ay; Qo a3
!’

EE) a1 a2 a3

’
z3 asz; aszs 33
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or by the equivalent alternatives, the transformation matrix [ay], or the transformation

dyadic aAn
A = a;ee; (2.25)

According to the transformation law for Cartesian tensors of order one (1.93), the

components of the stress vector tﬁﬁ’ referred to the unprimed axes are related to the primed
axes components ¢; by the equation

E® = g™ or ¢™ = At™ (2.26)

Likewise, by the transformation law (1.102) for second-order Cartesian tensors, the stress
tensor components in the two systems are related by

o/ = @ .a o or X = A-Z-A (2.27)
In matrix form, the stress vector transformation is written
[t6™) = [as] [t (2.28)
and the stress tensor transformation as
[o] = [a,]lo,][e,] (2.29)
Explicitly, the matrix multiplications in (2.28) and (2.29) are given respectively by

t;(’l;) l STRRN STRN ST} tiﬁ)
t;(:) = @21 Q22 Qo3 t;ﬁ) (2.30)
t;(:) a3 Q3 Qs tg'A‘)
of, o o Ay Gy Gy | 0 T O || &y Gy Gy
and o5 O3 Oy = Gop  Qyy  Qyg (| Ty Oy Tyg || Oy Oy Gy (2.81)
o5 Oy O O3 Ggy Qg || 05 Oz Oy || Qg3 Qyy Qg

29 STRESS QUADRIC OF CAUCHY

At the point P in a continuum, let the stress
tensor have the values o, when referred to directions
parallel to the local Cartesian axes P¢ ¢, {, shown
in Fig. 2-10. The equation

0., = *Kk* (a constant) (2.32)

represents geometrically similar quadric surfaces
having a common center at P. The plus or minus
choice assures the surfaces are real.

The position vector r of an arbitrary point lying
on the quadric surface has components ¢ =rn,
where 7; is the unit normal in the direction of r.
At the point P the normal component ¢.n, of the

stress vector ¢{™ has a magnitude

oy = tMn, = t™-n = onn, (2.33) Fig. 2-10

Accordingly if the constant k* of (2.32) is set equal to o,r* the resulting quadric
o'ijcicj = =*g,1? (2.34)
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is called the stress quadric of Cauchy. From this definition it follows that the magnitude
oy of the normal stress component on the surface element dS perpendicular to the position
vector r of a point on Cauchy’s stress quadric, is inversely proportional to 72, i.e. o, = *k?/7%
Furthermore it may be shown that the stress vector ti‘:’ acting on dS at P is parallel to the
normal of the tangent plane of the Cauchy quadric at the point identified by r.

2.10 PRINCIPAL STRESSES. STRESS INVARIANTS. STRESS ELLIPSOID

At the point P for which the stress tensor com-
ponents are o, the equation (2.12), t{” =o,n, as-

sociates with each direction n; a stress vector ¢{™. o
n’ _

Those directions for which t“:’ and n; are collinear as T
shown in Fig. 2-11 are called principal stress direc-
tions. For a principal stress direction, 7
A A A dS
ti™ = om or t™ = on (2.85)
in which o, the magnitude of the stress vector, is T2

called a principal stress value. Substituting (2.35)
into (2.12) and making use of the identities n, = §n,
and o, = o;, results in the equations

i

(o, — Sﬁa)nj =0 or (Z—1lo)- n=0 (2.36) Fig. 2-11

J

In the three equations (2.36), there are four unknowns, namely, the three direction cosines
n; and the principal stress value o.

For solutions of (2.86) other than the trivial one n; =0, the determinant of coefficients,

|o; — 8,0/, must vanish. Explicitly,

|0’“ — 80’| =0 or T9q Ogp = O Tos = 0 (237)

which upon expansion yields the cubic polynomial in o,

o =TI+ 1o —III; = 0 (2.38)

where I, = o, =1trZ (2.39)
II, = ¥oy0,— 0,0, (2.40)

III; = |o,| = detZ (2.41)

are known respectively as the first, second and third stress invariants.

The three roots of (2.38), o,,,,0,,, o¢,) are the three principal stress values. Associated
with each principal stress ¢, there is a principal stress direction for which the direction
cosines n{*’ are solutions of the equations

(0;= 04, d)n® = 0 or (Z—o,N-a® =0 (k=1,23) (2.42)



52 ANALYSIS OF STRESS [CHAP. 2

In (2.42) letter subscripts or superscripts enclosed by parentheses are merely labels and as
such do not participate in any summation process. The expanded form of (2.42) for the
second principal direction, for example, is therefore

. — @ @ @ —
("11 "(2))n1 toopn,> + oo n* = 0

@ - @ @ —

0y M + (0'22 0(2))1@2 + 0N % = 0 (243)
@ @ — @ —

oy Nyt ey, + ("33 "(2))n3 =0

Because the stress tensor is real and symmetric, the principal stress values are also real.

When referred to principal stress directions, the stress matrix [o,] is diagonal,

oy, 0 0O o 0 0
[o‘i].] = 0 Ty 0 or [0'“.] = 0 oy 0 (244)
0 0 o4 0 0 oy

in the second form of which Roman numeral
subscripts are used to show that the principal
stresses are ordered, i.e. ¢, > o; > o,,. Since
the principal stress directions are coincident
with the principal axes of Cauchy’s stress
quadric, the principal stress values include both
the maximum and minimum normal stress
components at a point.

In a principal stress space, i.e. a space
whose axes are in the principal stress direc-
tions and whose coordinate unit of measure is

stress (ti'A", t;ﬁ’, t§'A") as shown in Fig. 2-12,

the arbitrary stress vector ¢{™ has components Fig. 2-12
A A A
n) — (n) — n) —
¢ ’ Ty Py ty TIX(Y t™ = O3y (2.45)

according to (2.12). But inasmuch as (n1)? + (n2)*> + (ns)*> = 1 for the unit vector n;, (2.45)
requires the stress vector #{™ to satisfy the equation

(t:n))z (t;n))2 N (tén))2

("(1))2 ("(2))2 ("(a))2

= 1 (2.46)

in stress space. This equation is an ellipsoid known as the Lamé stress ellipsoid.

2.11 MAXIMUM AND MINIMUM SHEAR STRESS VALUES

If the stress vector tfa) is resolved into orthogonal components normal and tangential to
the surface element dS upon which it acts, the magnitude of the normal component may
be determined from (2.33) and the magnitude of the tangential or shearing component is
given by

o = t§'A‘)t§'A‘) — 2 (2.47)

ON
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This resolution is shown in Fig. 2-183 where
the axes are chosen in the principal stress
directions and it is assumed the principal
stresses are ordered according to o, > o, > o

Hence from (2.12), the components of ti"A') are

n) —

tm = UI’I’I,I

tw = o.m (2.48)
2 -2 *
t(‘l:) = o. N

3 II1°"3

and from (2.33), the normal component mag-
nitude is

oy = oIn§ + UH’I’I,g + UIIIng (249)
Substituting (2.48) and (2.49) into (2.47), the
squared magnitude of the shear stress as a
function of the direction cosines n; is given by Fig. 2-13

2 — 22 2 2 2 2 2 2\2
g = ofni + oy + oty (oIn§ + o n: + UIIIna) (2.50)

The maximum and minimum values of o, may be obtained from (2.50) by the method of
Lagrangian multipliers. The procedure is to construct the function

F = o — xnmy (2.51)

in which the scalar A is called a Lagrangian multiplier. Equation (2.51) is clearly a function

of the direction cosines n;, so that the conditions for stationary (maximum or minimum)

values of F are given by dF/on;=0. Setting these partials equal to zero yields the

equations
n{o2 — 20 (o n2+ o m2+ o, n2)+2} =0 (2.52a)

'’y s

n {U%I - 2011(017’1,? +o,n2+ o, n2)+ A} =0 (2.52b)

2 1 "2 111" "3

(o3 + o240 m2) + 1} = 0 (2.52¢)

2
na{" 20 ' ’s

111 111
which, together with the condition 7n; =1, may be solved for A and the direction cosines
N1, Ng, N3, conjugate to the extremum values of shear stress.

One set of solutions to (2.52), and the associated shear stresses from (2.50), are

The shear stress values in (2.53) are obviously minimum values. Furthermore, since (2.35
indicates that shear components vanish on principal planes, the directions given by (2.53
are recognized as principal stress directions.

n = *£1, ne = 0, ns = 03 for which o4 =10 (2.53a)
n1 = 0, ne = *1, ng = 0; for which ¢4 =10 (2.530)
n = 0, ns = 0, ns = *1; for which ¢,=0 (2.53¢)
)
)

A second set of solutions to (2.52) may be verified to be given by

nm = 0, ng = :tl/\/—2-, ng = .‘tl/\/é; for which oy = (o, — 0y,)/2 (2.54a)
ny = *1/\/2, n = 0, ns = *1/1/2; for which oy = (o, —0)/2  (2.54D)
m o= =1/V2, e = *14/2, ns = 0; for which oy = (o, —0)/2  (2.540)

Equation (2.54b) gives the maximum shear stress value, which is equal to half the difference
of the largest and smallest principal stresses. Also from (2.54b), the maximum shear stress
component acts in the plane which bisects the right angle between the directions of the
maximum and minimum principal stresses.
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2.12 MOHR’S CIRCLES FOR STRESS

A convenient two-dimensional graphical
representation of the three-dimensional state
of stress at a point is provided by the well-
known Mohr’s stress circles. In developing
these, the coordinate axes are again chosen in
the principal stress directions at P as shown
by Fig. 2-14. The principal stresses are as-
sumed to be distinct and ordered according to

o > oy 2 o (2.55)

I 11

For this arrangement the stress vector ¢{» has
normal and shear components whose magni-

tudes satisfy the equations Fig. 2-14
oy = alnf + crung + Umng (2.56)
02 + o = ofnf +oni+ ofung (2.57)

Combining these two expressions with the identity nm: =1 and solving for the direction

cosines n;, results in the equations

(n)? = (ox = or)loy = o) + (05)? (2.584)

(o, = o) (07— oypy)

(n2)2 — (“N B Um) (UN - ‘71) + (05)2 (2.58b)

("n - "III) ("n - "I)

(na)? = o~ U‘)_(U” — o) * (o) (2.58¢)
("III "I) ("III - “II)
These equations serve as the basis for Mohr’s stress circles, shown in the “stress plane” of
Fig. 2-15, for which the o axis is the abscissa, and the o4 axis is the ordinate.
In (2.58a), since o, — o, >0 and ¢, — o, > 0 from (2.55), and since (n1)? is non-negative,
the numerator of the right-hand side satisfies the relationship

((TN — UH)(UN - UIH) + (65)2 = 0 (2.59)
which represents stress points in the (o, o) plane that are on or exterior to the circle
[UN - (UII + ‘7111)/2]2 + (‘Ts)2 = [(UII'— "III)/Z]Z (2.60)

In Fig. 2-15, this circle is labeled C..

gs

o1r o1 91 oN

Fig. 2-15
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Similarly, for (2.58b), since o, —o,;, >0 and o;,—0, <0 from (2.55), and since (ng)?
is non-negative, the right hand numerator satisfies

(og — “III)(“N - ‘71) + (05)2 =0 (2.61)
which represents points on or interior to the circle
[O'N -~ ((THI + UI)/2]2 + (05)2 = [(UIII — UI)/2]2 (26'2)

labeled C; in Fig. 2-15. Finally, for (2.58¢), since o, —0; <0 and o, —0,<0 from
(2.55), and since (ns3)? is non-negative,

(aN - GI)(GN —_ GII) + (US)2 = ( (2.6'3)
which represents points on or exterior to the circle
[O'N — ((TI =+ GII)/2]2 =+ (05)2 = [(UI — UII)/2]2 (261;)

labeled C; in Fig. 2-15.

Since each “stress point” (pair of values of o, and o) in the (o, o;) plane represents a
particular stress vector tf-’, the state of stress at P expressed by (2.58) is represented in
Fig. 2-15 as the shaded area bounded by the Mohr’s stress circles. The diagram confirms
a maximum shear stress of (o, —o¢,;)/2 as was determined analytically in Section 2.11.
Frequently, because the sign of the shear stress is not of critical importance, only the top
half of this symmetrical diagram is drawn.

The relationship between Mohr’s stress diagram and the physical state of stress may
be established through consideration of Fig. 2-16, which shows the first octant of a sphere
of the continuum centered at point P. The normal n; at the arbitrary point @ of the
spherical surface ABC simulates the normal to the surface element dS at point P. Because
of the symmetry properties of the stress tensor and the fact that principal stress axes are
used in Fig. 2-16, the state of stress at P is completely represented through the totality of
locations @ can occupy on the surface ABC. In the figure, circle arcs KD, GE and FH
designate locations for @ along which one direction cosine of 7n; has a constant value.

Specifically,

o11
To

Fig. 2-16
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n1 = cos¢ on KD, ne = cos B on GE, ns = cosf on FH
and, on the bounding circle ares BC, CA and AB,
ni1 = cosw/2 = 0 onBC, nz = cosw/2 = 0 onCA, N3 = cosw/2 = 0 on AB

According to the first of these and the equation (2.58a), stress vectors for @ located on
BC will have components given by stress points on the circle C: in Fig. 2-15. Likewise, CA
in Fig. 2-16 corresponds to the circle Cs, and AB to the circle Cs in Fig. 2-15.

The stress vector components o, and o4 for an arbitrary location of @ may be deter-
mined by the construction shown in Fig. 2-17. Thus point ¢ may be located on Cs; by
drawing the radial line from the center of C; at the angle 28. Note that angles in the
physical space of Fig. 2-16 are doubled in the stress space of Fig. 2-17 (arc AB subtends
90° in Fig. 2-16 whereas the conjugate stress points o, and o, are 180° apart on C;). In
the same way, points g, h and f are located in Fig. 2-17 and the appropriate pairs joined by
circle arcs having their centers on the o, axis. The intersection of circle arcs ge and hf
represents the components o, and o4 of the stress vector t§3> on the plane having the normal
direction 7; at @ in Fig. 2-16.

s

o111 911 o1 oN

Fig. 2-17

213 PLANE STRESS

In the case where one and only one of the principal stresses is zero a state of plane
stress is said to exist. Such a situation occurs at an unloaded point on the free surface
bounding a body. If the principal stresses are ordered, the Mohr’s stress circles will have
one of the characterizations appearing in Fig. 2-18.

og Is s r os

o111 711 op oN o111 471 91 oy o111 o1 %1 oy

011120 UIIZO 0;20

Fig. 2-18
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If the principal stresses are not ordered and the direction of the zero principal stress
is taken as the z3 direction, the state of stress is termed plane stress parallel to the iz
plane. For arbitrary choice of orientation of the orthogonal axes #: and z; in this case,
the stress matrix has the form

oy o 0
[aij] = Ol Oy 0 (2.6'5)
0 0 0

The stress quadric for this plane stress is a cylinder with its base lying in the z:1z; plane
and having the equation

0,22 + 20,02, + 0,42 = *k? (2.66)

Frequently in elementary books on Strength of Materials a state of plane stress is rep-
resented by a single Mohr’s circle. As seen from Fig. 2-18 this representation is necessarily
incomplete since all three circles are required to show the complete stress picture. In
particular, the maximum shear stress value at a point will not be given if the single circle
presented happens to be one of the inner circles of Fig. 2-18. A single circle Mohr’s diagram
is able, however, to display the stress points for all those planes at the point P which include
the zero principal stress axis. For such planes, if the coordinate axes are chosen in
accordance with the stress representation given in (2.65), the single plane stress Mohr’s
circle has the equation

[oy = (043 +055)/2]2 + (05)2 = [(0),— 0,,)/2]* + (0,,)® (2.67)

The essential features in the construction of this circle are illustrated in Fig. 2-19. The
circle is drawn by locating the center C at ¢, = (o, + 0,,)/2 and using the radius
R = /[(o}y,— 0,,)/2]? + (0,,)* given in (2.67). Point A on the circle represents the stress
state on the surface element whose normal is n; (the right-hand face of the rectangular
parallelepiped shown in Fig. 2-19). Point B on the circle represents the stress state on
the top surface of the parallelepiped with normal n,. Principal stress points o, and o, are
so labeled, and points E and D on the circle are points of maximum shear stress value.

1 g
E
A
o11 C o1 ﬁ
B
D
Fig. 2-19

2.14 DEVIATOR AND SPHERICAL STRESS TENSORS

It is very often useful to split the stress tensor ,; into two component tensors, one of
which (the spherical or hydrostatic stress tensor) has the form
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o, 0 O
5, = o = (0 o, O (2.68)
0 0 o
where o, = —p = 0,,/3 is the mean normal stress, and the second (the deviator stress tensor)
has the form
Oy " Oy Ty a4 811 812 Si13
2, = Ty Opp — Oy Oy = 821 Sg2 823 (2.69)
T4y Ta9 Oas ™ Oy 831  S32  S33
This decomposition is expressed by the equations
o, = 80,/3+s, or Z = ol+Z) (2.70)

The principal directions of the deviator stress tensor s;; are the same as those of the
stress tensor ;. Thus principal deviator stress values are

Sy = Tuy — Oy (2.71)
The characteristic equation for the deviator stress tensor, comparable to (2.38) for the
stress tensor, is the cubic

$+1lzys —IIIz) = 0 or s+ (si8u + SuSm + SmusSH)s — 818uSm = 0 (2.72)

It is easily shown that the first invariant of the deviator stress tensor Iz, is identically
zero, which accounts for its absence in (2.72).

Solved Problems

STATE OF STRESS AT A POINT. STRESS VECTOR.
STRESS TENSOR (Sec. 2.1-2.6)
2.1. At the point P the stress vectors tE'A"

and t,F'A'*’ act on the respective surface
elements 7;AS and n¥ AS*., Show that

the component of t,f:" in the direction
of n¥ is equal to the component of

(n#
t.n

t{"* in the direction of n..
It is required to show that

A A
(n*) — ()
(25 R P (M

From (2.12) t{"*n; = o;n¥n; and by (2.22)
0 = O so that

A
Uji'ﬂ}k'ﬂi = (o,-j”ﬂi)%’; = t;n)'ﬂ}k Fig- 2-20
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2.2. The stress tensor values at a point P are given by the array

7 0 -2
z = 0 5 0
-2 0 4

Determine the traction (stress) vector on the plane at P whose unit normal is
n = (2/3): — (2/3)&; + (1/3)&s.

From (2.12), t™™® = n-3. The multiplication is best carried out in the matrix form of (2.13):

(M 1) g = _ — |14_2 10 -4 4
(57, ¢, )] [2/8,—2/3,1/3]| 0 5 o [3 3' 3 '3 T3
-2 0

—
=3

Thus t® = 4%€ — 28,

!

23. For the traction vector of Problem 2.2, determine (a) the component perpendicular
to the plane, (b) the magnitude of ¢{, (c) the angle between tg':) and h.

(@) t™W R = (4€, —28) - (36, — 28, +18) = 44/9
®) [t = V16 + 100/9 = 5.2
() Since t™-n = [t™|coss, coso = (44/9)/5.2 =0.94 and ¢ = 20°.

24. The stress vectors acting on the three coordinate planes are given by tﬁgl’, t,fgz) and t§33’.
Show that the sum of the squares of the magnitudes of these vectors is independent
of the orientation of the coordinate planes.

Let S be the sum in question. Then
— e gep () $(e2) (€3 4(e)
e e e €
S tilgil _}.tiztiz +ti3ti3

which from (2.7) becomes S = oy;01; + 0905; + 03,03, = 0,05, an invariant.

2.5. The state of stress at a point is given by the stress tensor
o Qo bo

o, = ao [ Co

where qa, b, ¢ are constants and ¢ is some stress value. Determine the constants a, b
and ¢ so that the stress vector on the octahedral plane (a = (1/1/3)e; + (1/\/5)82 +
(1/v/3)8;) vanishes.

A
In matrix form, ti(“) = o;;m; must be zero for the given stress tensor and normal vector.

¢ ao bo 1/\/§ 0 at+db = —1

a0 o Co 1/\/5 = |0 hence a+c¢ = —1

be co o 1/\/§ 0 b+ec = —1
Solving these equations, ¢ = b = ¢ = —1/2. Therefore the solution tensor is

¢ —a/2 —0o/2
g = —e/2 o —a/2
—a/2 —6/2 @
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2.6. The stress tensor at point P is given by the
array
7-5 0
z = -5 3 1
0 1 2

Determine the stress vector on the plane passing

through P and parallel to the plane ABC shown
in Fig. 2-21.

The equation of the plane ABCis 3x,+6x,+2x,=12,

and the unit normal to the plane is therefore (see Prob-
lem 1.2)

ED)

A A A A
— 3 [ 2
no= get qept ey

Fig. 2-21

From (2.14), the stress vector may be determined by matrix multiplication,

7 -5 0

(8/7,6/7,2/7)| ~5 3 1 [~9, 5, 10]

3l

0 1 2
10
7

A
€s3.

2.7.

The state of stress throughout a continuum is given with respect to the Cartesian
axes Oz 2225 by the array

3zx; 5xz 0
s = | 522 0 2

0 23 0

Determine the stress vector acting at the point P(2, 1, \/§ ) of the plane that is tangent
to the cylindrical surface 2 +22 =4 at P.

At P the stress components are given by

6 5 0
T = | 5 0 23
0 2v3 o

The unit normal to the surface at P is determined

from grad¢ = V¢ = V(x§+fc§——4). Thus Vg =
22,8, + 2248, and so

Ve = 28 + 2V/38, atP

A

e 3
Therefore the unit normal at P is n 2 \/'A

n = —~+ —e;
This may also be seen in Fig. 2-22. Finally the stress
vector at P on the plane L to i is given by

6 5 0 0 5/2
5 0 2v3 1/2 = 3
0 2V3 o V3/2 V3

or t® = 58/2 + 3%, + V34,

Fig. 2-22
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EQUILIBRIUM EQUATIONS (Sec.2.7)

2.8. For the distribution of the state of stress given in Problem 2.7, what form must the
body force components have if the equilibrium equations (2.24) are to be satisfied
everywhere.

Computing (2.24) directly from Z given in Problem 2.7,
3xg + 102y + 0 + pby =
0+ 0+ 2+ pb,
0+ 0+ 0+ pby

These equations are satisfied when b; = —13x,/p, by = —2/p, b3 = 0.

il

0

It

2.9. Derive (2.20) from (2.19), page 49.
Starting with equation (2.19),

A
f eijkxjt,g") asS + f Eijkxjpbk davV. = 0
s v
= o;n; in the surface integral and convert the result to a volume integral by
f (Eijkxjdpk)npds = f (eijkxjcpk)’pdV
s v

Carrying out the indicated differentiation in this volume integral and combining with the first
volume integral gives

A
substitute t;“)

(1.157):

f ei]-k{:cj,papk + :c,-(apk:p + pbk)} dav = 0
v
But from equilibrium equations, o, , + pb, = 0; and since x;,=3§ this volume integral

reduces to (2.20), f o AV = 0.
v

ip*

STRESS TRANSFORMATIONS (Sec. 2.8) )
2.10. The state of stress at a point is given with respect to the Cartesian axes Ox,xsx3 by
" the array
2 -2 0

T = (-2 v2 o0
0 0 —/2

Determine the stress tensor Z’ for the rotated axes Oxixsx: related to the unprimed
axes by the transformation tensor

0 12 1H2
A = vz 12 —1/2
-1/2 1/2 -1/2

The stress transformation law is given by (2.27) as of; = aaj00,q or T = A*Z A, The de-

tailed calculation is best carried out by the matrix multiplication [of;] = [a;,][0,4][aq;] given in
(2.29). Thus
0 V2 1V2 2 —2 0 0 1V2 —1/V/2
[of] = V2 12 —1/2 -2 V2 o |l 12 1,2 1/2
| —1/V/2 12 —1/2 0 o —Vz|linZ -—-1/2 -—1/2
0 o 2
= |0 1—-V2 -1
L2 -1 1+V2
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2.11. Show that the stress transformation law may be derived from (2.33), the equation

2.12.

oy = o, NN, expressing the normal stress value on an arbitrary plane having the unit
normal vector n..

Since oy is a zero-order tensor, it is given with respect to an arbitrary set of primed or
unprimed axes in the same form as

—_ P an? an? —
ay = olmin; = oymn

and since by (1.94) n{ = a;n

i3

Pl ! — 7 _ —
onin; = 3iQipNpAigg — ON = TpqlpTq

where new dummy indices have been introduced in the last term. Therefore
(0j0ip85q — TpgdMpng = O
and since the directions of the unprimed axes are arbitrary,

? p—
9ii%ipdia = Ipq

For the unprimed axes in Fig. 2-23, the stress
tensor is given by

r 0 0
o, = 0 0
0

[T

T

Determine the stress tensor for the primed
axes specified as shown in the figure.

It is first necessary to determine completely the
transformation matrix A. Since z] makes equal angles
with the x; axes, the first row of the transformation

table together with aj; is known. Thus Fig. 2-23
*, Ly T3
! 1/V3 1/V3 1/V3
2
x4 V2

Using the orthogonality equations a;a; = 8, the transformation matrix is determined by com-
puting the missing entries in the table. It is left as an exercise for the student to show that

[ 1v3 V3 1B
[ay] = |—2/V6 16 116
o —-1/V2 1Nz |

V3 13 V3l - 0 o113 —2/V6 o
Therefore [of] = | —2/V/6 1/V/6 1//6 0|l 1/V3 16 —1//2
0 —1/VZ 1/V2 | 0 - || IV3 16 12

0
0
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V3 V3 VB 1V —2/6 o r 0 0
= | —2e/V6 Ve Ve || 13 O 1NVE —1/VZ| = |0 0
0 —/V2 V2|13 1Ve 1/V2 00 -

The result obtained here is not surprising when one considers the Mohr’s circles for the state of
stress having three equal principal stress values.

CAUCHY’S STRESS QUADRIC (Sec. 2.9)

2.13.

2.14.

Determine the Cauchy stress quadric at P for the following states of stress:

(a) uniform tension O = Ogg = 033 = 05 01y = 0,4 = Oy = 0
(b) uniaxial tension o, =0; 0,, =0, =0, =0, =0,, =0
(c) simple shear o, = o, n

(d) plane stress with o, =0 =0,; ¢

ST 0 T Oy T Oy = 0y =0y, =0
2T Oy T Ty 0y = 0y = 0y, = 0.

From (2.82), the quadric surface is given in symbolic notation by the equation {2 +¢ = xk2,
Thus using the matrix form,

[o 0 o[4]
(@ [§828]| 0 o 0| & | = o2 + of2 + ot2 = =k2
_0 0 o B _§3 i
Hence the quadric surface for uniform tension is the sphere i’i + §§ + §§ = *k2/o.
[ 0 o[¢6]
() [fnfat]{ 0 0 0 | = di’f = =k
_0 0 0 | _i’g ]
Hence the quadric surface for uniaxial tension is a circular cylinder along the tension axis.
0o« o[y ]
() [fnimts]| = 0 0 S| = 2rh¢, = Ek?
0 0 0 |||
and so the quadric surface for simple shear is a hyperbolic cylinder parallel to the {; axis.
¢ 7 0| i’l—
(@) [ulotal| 7 o 0| = o2 + 2838 + a2 = k2
0 0 0% |

and so the quadric surface for plane stress is a general conic cylinder parallel to the zero principal
axis.

Show that the Cauchy stress quadric for a state of stress represented by

a 0 O
2 = 0 b O
0 0 ¢

is an ellipsoid (the stress ellipsoid) when a, b and c are all of the same sign.

The equation of the quadric is given by

a 0 0 &
Budadsl| 0 b 0|1 & | = a8 + b3 + cf2 = =2
0 0 ¢ {3
2 {2 2 1.0
Therefore the quadric surface is the ellipsoid SL—J,- S5 8 _ xR .
be " ac ' ab abce
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PRINCIPAL STRESSES (Sec.2.10-2.11)

2.15. The stress tensor at a point P is given with respect to the axes Oxixsx; by the values

3 1 1
o = |1 0 2
1 2 0

Determine the principal stress values and the principal stress directions represented
by the axes Ox¥xix¥.

From (2.37) the principal stress values ¢ are given by

3—o 1 1
1 —¢ 2| = 0 or,upon expansion, (¢ + 2)(c —4)(c—1) =0
1 2 —a
The roots are the principal stress values o¢y = —2, o¢p) =1, o = 4. Let the ¥ axis be the

direction of o(;), and let !’ be the direction cosines of this axis. Then from (2.42),
B+2mV + L +nld = 0
M) M =
nyt’ + 20 + 2n’ = 0

¢} ¢} (1 —
n +2n2 +2n3 0

Hence n{" = 0; n{D = —n{V and since nn; =1, (n;”)2 =1/2. Therefore n{¥’ =0, n{" = Ve,
n;” =—1/V2.
Likewise, let x;‘ be associated with ¢¢,,. Then from (2.42),
2 + 2 + 2@ = 0
n® —n® 4 20 = 0
n + 20D — @ = 0

2 _ @ — _ 2 _
so that »® =1/V3, »® = -1/V3, n{® = -1/V3.

Finally, let x¥ be associated with o¢3,. Then from (2.42),

(D (3 3 —
n; + n, +n3 =0
(3) _ 4n(® 3 —
n 4'n2 + 2713 0
(3 (8) - gm(3) —
n” + 2n2 in,> = 0

so that n{® = —2/V/6, n;” =-1/V/6, n® = —1/V/6.

2.16. Show that the transformation tensor of direction cosines determined in Problem 2.15
transforms the original stress tensor into the diagonal principal axes stress tensor.

According to (2.29), [o}] = [¢ip][0pg][ags], which for the problem at hand becomes
[ o vz 2|3 11 0 1/V/3 —2//8
[oh] = 1/V/3 —1/4/3 —1//3 || 1 0 2 V2 —1V/3 —1/\/6
| —2/vV6 —1/6 —1/V/6 || 1 2 o || —1/V2 —1/V/3 —1//6
0 —Vz \/E_F 0 1/V3 —2//6 -2 0 0
= 1/V/3 —1/V/38 —1/V3 V2 —1//3 —1V6 | = 010
| —8/V6 —4/V/6 —4/6_|| —1//2 —1/v/3 —1/\/6 0 0 4
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2.17.

2.18.

Determine the principal stress values and principal directions for the stress tensor

From (2.87), T T—o T = 0 or (r—o)[270+ % +2r2¢ = [3r—o0]o2 = 0.
T T T—a0
Hence Ic1) = 0, ac) — 0, O¢3) — 3r. For ac3) = 37', (2.42) yield

PN G)) (3) @ _— (3) __ 9, (3) (3) — (3) 3) _ 9, (8) —
2n." + ny +n3 =0, n, 2n,” + n? = 0, ny +n2 2n3 =0

and therefore n{® =n{® =n®=1//3. For o(, = o¢ =0, (2.42) yield

nt+n,+ng =0, ntn,+ng =0 n+nt+tn =0

which together with n;n; =1 are insufficient to determine uniquely the first and second principal
directions. Thus any pair of axes perpendicular to the n§3) direction and perpendicular to each

other may serve as principal axes. For example, consider the axes determined in Problem 2.12, for
which the transformation matrix is

V3 1/V3 11/3
la) = | —2nV6 1V6 16
0 -1z 1/V2

According to the transformation law (2.29), the principal stress matrix [a’:j] is given by
v v w3 [ o« o+ | V3 —2/VE o

-2/V6 16 Vel « o || 1U/VE 1NV6 —1/V/2
0 —-1~n2 V2 ll+ » < |13 1IWVE 1N2

il

[o3]

| 'vV3r V3r V3r |l 13 —2/V6 o 3r 0 0
= 0 0 0 1IV8 1ne —1V2 | = 0 0 0
Lo ()} 0 1/V3 1n6 112 0 0 0

Show that the axes Ox}z}x*, (where
x¥, w3 and x¥ are in the same vertical
plane, and ¥, #, and 2, are in the same
horizontal plane) are also principal axes °°“_“[irf’ ’
for the stress tensor of Problem 2.17.

The transformation matrix [a;;] relating
the two sets of axes clearly has the known
elements

- . cos~L(1H/3)

)
— — ) 2

[a] = | - - V2B
13 1/V3  1/V3

cos=1(1/V/3)

as is evident from Fig. 2-24. From the orthog-
onality conditions aa; = 8, the remaining
four elements are determined so that Fig, 2-24
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-1V/2 112 0
[ay] = | -1V6 —1/V6 VI3

13 1/V3 1V3

12 12 o ror o1 |[ ~1V2 —1V6 1/\/1
0
0

As before,

—1/V/6 —-1V6 V2IV3 |l r © « V2 —1V6  1V3
L 1/V3 13 1IN3 | l+r + = 0 V2/V/3 1/V3

Sx
I

0 0 0 —-1V2 -1/6  1/V3 0 0
= 0 0 0 Ve =1ve 13| = |o o
_\/_T \/§'r \/_'r 1] \/E/\/g 1/\/§ 0 O

3r

2.19. Show that the principal stresses afk) and the stress components o, for an arbitrary

set of axes referred to the principal directions through the transformation coefficients
3
ai; are related b = a.a .o.
1 y oy p; pi%pi%p

i — * . s £ . .
From the transformation law for stress (2.27), o;; = apiaq50,4; but since o, are principal

stresses, there are only three terms on the right side of this equation, and in each p = q. There-
3

fore the right hand side may be written in form o¢;; = b apiapja:.
p=1

2.20. Prove that o0, 0, is an invariant of the stress tensor.
By the transformation law (2.27),
o{of0k; = Qip@igTpaQirOksTrs@km®inTmn
= (apair)(@5q95) (01 sBim)TpgTrsTmn
8pr8qn8smIpqTIrsImn
= (8519pg) (8 gnImn) (8sm0rs)

= OrgOqmIrm = 9ij%ikTkj

2.21. Evaluate directly the invariants Is, II;, III; for the stress tensor

6 -3 0
o, = |3 6 0
0 0 8

Determine the principal stress values for this state of stress and show that the
diagonal form of the stress tensor yields the same values for the stress invariants.

From (2.89), Iy = o; = 6+ 6+ 8 = 20.
From (2.40), IIz'

i

(1/2)(0y055 — 03j03;)

i

011999 T 099033 T 03301) — 012015 — 033033 — 03103
36 + 48 + 48 — 9 = 123, '
From (2.41), 1Il; = [aijl = 6(48) + 3(—24) = 216.

I

The principal stress values of ¢;; are o =38, oy =8, oyy = 9. In terms of principal values,
Is = oy +oy+oqp = 34+8+9 = 20
IIy = ogoq + oqpon + ooy = 24 + 72 + 27 = 123
IIl; = oo = (24)9 = 216
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2.22,

2.23.

The octahedral plane is the plane which makes equal angles with the principal stress
directions. Show that the shear stress on this plane, the so-called octahedral shear
stress, is given by

9oct — Tli\/("r —oy) + (o —oy)* + (o — o))

With respect to the principal axes, the normal
to the octahedral plane is given by

A= \%(@ﬁ@ﬁ@a)
3

Hence from (2.12) the stress vector on the octa-
hedral plane is

iy 1 A A A
t® = — (e, +€,+¢€,)
AA AA AA
* (or1€) + arreqse; + apreges)

— 1 A A A
= - (01€1 + o1€5 + oprres)

V3

and its normal component is

AL
oy = n-t™ = Loy + oy +oyy)
Therefore the shear component is
= At ot — o2 = {2+ 02 +02.) — Loy + orr + arp)2}1/2
docT = on = §lo7 + o7y +oqyy) — Hor+ o + o)
_ 2, 2 2 2, 2 2
= {87+ ofi t+oty) — (o7 T o7p T o1y + 201011 + 201101y + 20q1707) 112

2
= %{(U% =~ 2oyop + G%I) + (011 — 2010711 + G%II) + (“%n — 2oyqqpor + 012>}”2

= Wlor—ow)? + (o~ or)? + (o1 — o7)?

5 0 0
The stress tensor at a point is given by o, =| 0 —6 —12 |. Determine the maxi-
0 —12 1

mum shear stress at the point and show that it acts in the plane which bisects the
maximum and minimum stress planes.

From (2.38) the reader should verify that the principal stresses are o; =10, oy =35,
op = —15. From (2.54b) the maximum shear value is o5 = (oy; —07)/2 = —12.5. The principal
axes Ox’ o} x%‘ are related to the axes of maximum shear Oxjxj;xj by the transformation table
below and are situated as shown in Fig. 2-26.

@] 1V2 0 12
x5 0 1 0
x5 -1/V2 0 V2 xy
P 11

Fig. 2-26
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The stress tensor referred to the primed axes is thus given by

ive o V210 o o120 —142 —25 0 —125
[of] = 0o 1 0 0 5 0 0o 1 0 = 0 5 0
-1vV2 o 12l o o —15]| 12 o 1/V/2 ~-125 0 -25

The results here may be further clarified by showing the stresses on infinitesimal cubes at the
point whose sides are perpendicular to the coordinate axes (see Fig. 2-27).

Fig. 2-27

MOHR’S CIRCLES (Sec. 2.12-2.13)

2.24. Draw the Mohr’s circles for the state of stress discussed in Problem 2.23. Label

important points. Relate the axes Oxix:zs (conjugate to o) to the principal axes

Oz} 3 x4 and locate on the Mohr’s diagram the points giving the stress states on the
coordinate planes of Oz z22s.

The upper half of the symmetric Mohr’s circles diagram is shown in Fig, 2-28 with the maxi-

mum shear point P and principal stresses labeled. The transformation table of direction cosines is

2} z3 z
x, 0 1 0
Xy —3/5 0 4/5
X3 4/5 0 3/5

from which a diagram of the relative orientation of the axes is made as shown in Fig. 2-29. The
x, and «; axes are coincident. x, and x; are in the plane of «}2% as shown. From the angles
« = 36.8° and B = 53.2° shown, the points A(—6,12) on the plane 1 to x, and B(1,12) on the
plane | to x3 are located. Point C(5, 0) represents the stress state on the plane 1 to x;.

s
24 = 73.6°

om = —15 oy =5 o = 10

Fig. 2-28 Fig. 2-29
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2.25. The state of stress at a point referred to axes Ox,x.x3 is given by

5 0 0
o = | 0 -6 -12
0-12 1

Determine analytically the stress vector components on the plane whose unit normal
is 0 = (2/8)& + (1/3)& + (2/3)€&. Check the results by the Mohr’s diagram for
this problem.

From (2.18) and the symmetry property of the stress tensor, the stress vector on the plane of
A is given by the matrix product

-5 0 0|l 2/3 —10/3
0 —6 —12{|1/3| = | —10
0 —12 1 2/3 —10/3
Thus t™ = —10€,/3 — 108, — 1083/3; and from (2.83), oy = t®.fi = —70/9. From (2.47),
agg — 70.7/9.
For o;; the principal stress values are oy =10, o = —5, o = —15; and the principal axes
are related to Ox,zyx3 by the table
x, Zy g
x¥ 0 —3/5 4/5
:c;‘ 1 0 0
x} 0 4/5 3/5
0 —3/5 4/5 || 2/3 1/3
Thus in the principal axes frame, =} = aym; or |1 0 0 1/3 | = | 2/8 |. Accordingly
0 4/5 3/5 || 2/3 2/3

tlie angles of Fig. 2-16 are given by 6 = 8 = cos—12/3 = 48.2° and ¢ =cos—11/3 = 70.5°, and
the Mohr’s diagram comparable to Fig. 2-17 is as shown in Fig. 2-30.

\<—2\¢\: 141°
\

> o
oy = 10 N

Fig. 2-30
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2.26. Sketch the Mohr’s circles for the three cases of plane stress depicted by the stresses
on the small cube oriented along the coordinate axes shown in Fig. 2-31. Determine
the maximum shear stress in each case.

£

X2

(a) (b) ()
Fig. 2-31

The Mohr’s circles are shown in Fig, 2-32,

gs ‘ as as

(05)max = @

(05)max = 0/2

aN o =0 aN
(a) (e)
Fig. 2-32
SPHERICAL AND DEVIATOR STRESS (Sec.2.14)
12 4 0
2.27. Split the stress tensor o, = | 4 9 —2 | into its spherical and deviator parts and
0 -2 3

show that the first invariant of the deviator is zero.
0M=0kk/3:(12+9+3)/3:8. Thus

8 0 4 4 0
0ij - GMBij + sij = 0 8 0 + 4 1 -2
0 8 0 —2 -5

and sy = 4+1—5 = 0.

2.28. Show that the deviator stress tensor is equivalent to the superposition of five simple
shear states.

The decomposition is
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S;;7 S22 Sy3 0 Sy 0 0 0 S13 0 0 0
831 Ss2  So3 = s O 0] + 0 0|+ |0 0 sy
S3; S3p 833 0 0 0 83, (] 0 0 839 0

- 0 0 0 0 0

+ 0 —sp; 0) + | 0 —s33 0

0 0 0 0 0 S33

where the last two tensors are seen to be equivalent to simple shear states by comparison of cases
(a) and (b) in Problem 2.26. Also note that since s; =0, —s;; —s33 = 8g.

2.29. Determine the principal deviator stress values for the stress tensor

10 -6 0
o = |—6 10 0
0 0 1
3 —6 o0
The deviator of o;; is s;; = -6 3 0 and its principal values may be determined
from the determinant 0 0 —6
3—s —6 0
—6 3—s 0 = (—6—s)s+3)(s—9) = 0
0 0 —6—s

Thus s; =9, sy =—8, sy = —6. The same result is obtained by first calculating the principal
stress values of ¢;; and then using (2.71). For o, as the reader should show, o; =16, oy =4,
o =1 and hence s; =16—7=9, sy =4—-7=-3, sy =1—T7T=—6,

2.30. Show that the second invariant of the stress deviator is given in terms of its principal
stress values by IIs, = (sisu + susin + smsi), or by the alternative form Iz, =
—"%‘(s% + 3%1 + sfll)'

In terms of the principal deviator stresses the characteristic equation of the deviator stress
tensor is given by the determinant

s;— 8 0 0
0 Sip—s 0 = (s;—8)sp—s)sp—s) = 0
0 0 Sy —$§
= 88 + (s8y + suSip t+ SuS)S — SiSuSm
Hence from (2.72), Il = (si81; + suSmr + 8pursp). Since sy + sy + sy = O,
Iy = 3@sisy + 288 + 2881~ (Sr+ 8+ 8m)?) = —§(s? + 8% + 82

MISCELLANEOUS PROBLEMS

2.31. Prove that for any symmetric tensor such as the stress tensor o;, the transformed
tensor o, in any other coordinate system is also symmetric.

r — — p— !
From (2.27), of; = a;,0;q0,q = @jq®ipTqp = Tjie



	Schaums_Outline_of_Continuum_Mechanics

