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In the development of mass models, one may form an admissible mass matrix in
parametric form and define its parameters such that the corresponding eigenvalue
problem results in the best possible solution in terms of some error measures. This
article uses the mentioned inverse strategy and develops a mass formulation for
a plate element in bending with superconvergent eigen-properties. The parameters
of mass formulation are obtained by setting the element formulation low-order
discretization errors to zero. In situations where the error terms cannot be set to
zero, the mass model parameters are defined in such a way that the residual errors
in adjacent nodes are equal in magnitudes but with opposite signs. This creates
zero bias error in the associated eigen-problem and leads to an element model
with super convergent eigenvalue properties. The obtained mass matrix using the
proposed procedure produces accurate estimates of plate eigenvalues with
a higher rate of convergence compared to the existing mass models.

Keywords: mass matrix; discretization error; inverse method; plate element

1. Introduction

Thin plates are the most elementary and essential structural components in modern
engineering such as construction engineering, aerospace and aircraft structures, nuclear
power plant components and naval structures. Because of their vast application,
knowledge of dynamic characteristics, i.e. natural frequencies and mode shapes has
been the focus of research in solid mechanics for more than a century [1,2]. Although
analytical solutions for the bending of thin plates have been intensively developed during
the past decades, the analytical solutions for thin plates are still not completed properly [1].
Therefore numerical solutions such as finite element method (FEM), finite difference
method (FDM) etc., are of interest to researchers.

Since the early days of developing FEM, the concept of a lumped mass model has
received much attention. Lumped mass matrices are diagonal and their inversion requires
negligible computational costs. In solving dynamic problems, there are also various time-
stepping schemes for which a diagonal mass matrix is very advantageous. In spite of these
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advantages, the lumped mass matrix produces a slow rate of convergence in estimating the
eigenvalues of the system. Another disadvantage of lumped mass formulation is that
in some cases, for example, when the element has rotational degrees of freedom (DOF),
they do not lead to a positive definite mass matrix.

The improvement in mass matrix formulations was made by developing consistent
mass matrices. Consistent mass matrices have proved to be more accurate in representing
the physical properties of an element, such as its mass moments of inertia, compared to
lumped mass matrices. Also based on Rayleigh’s principle, when both the mass and stiffness
matrices are developed using permissible shape functions, the resultant eigen-solution
produces an upper bound estimate of the exact solution.

Considerable effort in finite element modelling is focused on obtaining an element
formulation that gives a small discretization error and fast convergence [3,4]. Based on the
fact that the consistent finite element formulation leads to an overestimation of
eigenvalues and the lumped finite element formulation usually leads to lower bounds
of eigenvalues, several researchers concluded that an intermediate formulation should
exist that is accurately superior to both formulations. Kim [5] studied the performance of
non-consistent mass matrices of bars and beams obtained by the linear combination of
lumped and consistent ones. Sauer and Wolf [6] constructed new mass matrices for bar and
beam elements using the element eigenvectors when they are scaled using the exact
eigenvalues of the element. The proposed mass formulations by Kim [5] and Sauer
and Wolf [6] produce accurate estimation of higher modes, but their convergence rate
is slow compared to some other models. More recently, Fried et al. [7,8] showed that
a super-convergent finite element formulation exists for bar and membrane eigen-
problems and used a linear combination of lumped and consistent mass matrices to obtain
super-convergent element formulations. More recently, Madoliat and Ghasemi [9]
produced bilinear rectangular element matrices for diffusion problems via an inverse
method. They showed that this rectangular element matrix is superior to the consistent and
lumped finite element formulations.

The optimum non-consistent mass matrix with super-convergent property is not, in
general, a linear combination of the lumped and consistent mass matrices. They can be
obtained by setting up a parametric form for the mass matrix and assigning the parameters
such that the required convergence properties are achieved. Apparently, it was Stavrinidis
et al. [10] who first used this type of analysis for assessing the discretization error
in rod and beam elements. They showed that the discretization error in the solution of a
finite element model can be expressed by a series in powers of Dx, where Dx is the element
characteristic length. The coefficients of the series are linear combinations of
the mass matrix parameters. The optimum values for the parameters are determined
by minimizing the discretization errors in the finite element solution and hence obtaining
a super-convergent element formulation.

The objective in this article is to set up an admissible parametric mass matrix for
a rectangular plate element and define the parameters by minimizing the discretization
errors in the finite element formulation. Discretization errors are those associated with
replacing the continuous media by one composed of finite elements. If the characteristic
lengths of the elements approach zero, the discretization error vanishes, assuming
convergence.

In general, an admissible mass model must meet certain requirements. Consider an
element with d degrees of freedom and r rigid-body modes, �i, i ¼ 1, . . . , r. The mass matrix
M is symmetric, positive definite and of rank d. If the rigid-body modes,
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(R ¼ ½�1,�2, . . . ,�r�, are defined on the principal co-ordinates of an element with six DOF
at each node, then

(T
RMR ¼ diagðm,m,m, Ixx, Iyy, IzzÞ ð1Þ

where m is the element total mass and Ixx, Iyy and Izz are the mass moments of inertia.
Moreover, if the element has some symmetric properties, then the mass model reflects
these properties; rotation of the element about its symmetry axes does not change the mass
matrix. It is possible to define an admissible parametric mass matrix for an element that
satisfies these requirements but depend upon few parameters. Established elements in the
literature are members of this admissible family of models. By using finite element error
analysis, we are able to establish the accuracy of a model that arises from specified shape
functions with known parameters, and to find the optimum values of the parameters.

In this article, a mass formulation is developed for a four-node plate element
in bending by minimizing the discretization errors and achieving a super-convergent
eigenvalue formulation. An admissible parametric form of mass matrix having
12 parameters is developed. Then by comparing the eigen-equations in discrete form
with exact eigen-equations of bending plate and minimizing the differences, optimum
values of the parameters are determined. The literature reports discretization error analysis
of element models; starting from the lowest order terms, the errors are set to zero until all
parameters are exhausted and the element model is identified. This article introduces
a different approach in minimizing the errors by distributing the errors uniformly over
the entire domain and setting the cumulative errors to zero. This do not affect
the accuracy of the eigenvalue predictions but exhausts less parameters compared
to the conventional method and allows more accurate models to be identified. The
obtained mass model produces highly accurate eigenvalues having fast rate of
convergence.

The rest of this article is organized as follows. The basic concepts of developing a
super-convergent mass formulation involving developing an admissible element mass
model in parametric form and minimization of discretization errors in the finite element
model are illustrated in Section 2 using a simple rod element. Section 3 uses the inverse
parameter identification method demonstrated for rod element to establish a super-
convergent eigenvalue formulation for the bending plate model. Section 4 studies the
performance of the obtained mass formulation using numerical examples, followed by the
concluding remarks in Section 5.

2. Three nodes rod element

A uniform quadratic rod element with the length of 2dx shown in Figure 1 has an
admissible parametric mass matrix M satisfying the following two requirements:

(i) Out of plane rotation of the element about its mid node by 180� does not change its
mass distribution:

M ¼ TTMT, M ¼ dx
m11 m12 m13

m22 m23

Sym: m33

2
4

3
5, T ¼ �

0 0 1
0 1 0
1 0 0

2
4

3
5) m33 ¼ m11

m23 ¼ m12

�
: ð2Þ
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(ii) The total mass of element normalized using the unit length density is 2dx. This

requirement can be imposed on the mass matrix using rigid body mode � as

�TM� ¼ ð2m11 þ 4m12 þ 2m13 þm22Þdx ¼ 2dx,
m22 ¼ 2ð1�m11 � 2m12 �m13Þ,

� ¼
1
1
1

8<
:

9=
; : ð3Þ

An admissible parametric mass matrix is defined using three independent parameters,

satisfying the above two requirements, as

M ¼ dx
m11 m12 m13

2� 2m11 � 4m12 � 2m13 m12

Sym: m11

2
4

3
5: ð4Þ

The developed admissible mass matrix along with the element stiffness matrix obtained

using quadratic shape functions [11],

K ¼
1

6dx

7 �8 1
16 �8

Sym: 7

2
4

3
5 ð5Þ

are used in this article to model free vibrations of a uniform rod with free boundary

conditions. The choice of free boundary conditions is because the assembled finite element

models inherently satisfy these natural boundary conditions. The assembled finite element

model shown in Figure 1 consists of N similar elements with 2Nþ 1 DOF.
The predicted eigenvalues of the finite element model are compared with the exact

values, �, obtained from the corresponding boundary value problem:

d2uðxÞ

dx2
þ �uðxÞ ¼ 0, 05 x5 1,

duð0Þ

dx
¼

duð1Þ

dx
¼ 0: ð6Þ

Therefore, it is a natural choice to compare the set of discrete finite element eigen-

problem with the corresponding boundary value problem and specify the unknown

parameters of the model by minimizing the residuals, i.e. the discretization errors.
Discrete eigen-equations formed corresponding to a typical node i at the interface

between two elements and its neighbouring mid element nodes i� 1 and iþ 1 are

1

3dx

�4 8 �4 0 0
1=2 �4 7 �4 1=2
0 0 �4 8 �4

2
4

3
5� �dx m12 m22 m12 0 0

m13 m12 2m11 m12 m13

0 0 m12 m22 m12

2
4

3
5

0
@

1
A

ui�2
ui�1
ui
uiþ1
uiþ2

8>>>><
>>>>:

9>>>>=
>>>>;
¼ 0f g:

ð7Þ

Figure 1. The rod model (a) element DOFs and (b) assembled model node numbering.
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Following Stavrinidis et al. [10], we consider the deformation ui to be the exact

analytical solution and rewrite the deformations in other neighbouring nodes using Taylor

series expansion of ui in those nodes. This converts the discrete eigen-equations given

in Equation (7) to continuous series equations in powers of dx:

X1
n¼1

8

3 2n!ð Þ

@2nui�1
@x2n

dx2n�1 � 2�
�
ð1�m11 �m12 �m13ui�1dxþm12

�
X1
n¼1

1

2n!ð Þ

@2nui�1
@x2n

dx2nþ1
�
¼ 0: ð8aÞ

X1
n¼1

4n � 8

3ð2nÞ!

@2nui
@x2n

dx2n�1 � 2� m11 þm12 þm13ð Þui dxþ
X1
n¼1

4nm13 þm12

ð2nÞ!

@2nui
@x2n

dx2nþ1

 !
¼ 0:

ð8bÞ

X1
n¼1

8

3ð2n!Þ

@2nuiþ1
@x2n

dx2n�1 � 2�
�
1�m11 �m12 �m13ð Þuiþ1dxþm12

�
X1
n¼1

1

ð2n!Þ

@2nuiþ1
@x2n

dx2nþ1

!
¼ 0: ð8cÞ

It is seen from Equation (8) that the eigen-equations are of odd orders of dx in the

internal nodes of the assembled model. In a similar manner, it can be shown that the two

boundary nodes of the free rod, i¼ 0, Nþ 1, contain all orders of dx starting from

zero order:

X1
n¼1

2n

6
�
4

3

� �
@nu0
@xn

dxn�1

n!
� � m11 þm12 þm13ð Þu0dxð

þ
X1
n¼1

m12 þ 2nm13ð Þ
@nu0
@xn

dxnþ1

n!

!
¼ 0 ð9aÞ

X1
n¼1

2n

6
�
4

3

� �
@nuNþ1
@xn

dxn�1

n!
� �

�
m11 þm12 þm13ð ÞuNþ1dx

þ
X1
n¼1

m12 þ 2nm13ð Þ
@nuNþ1
@xn

dxnþ1

n!

!
¼ 0: ð9bÞ

The characteristic length of element dx is an independent variable; therefore, in

comparing the obtained series equations with the exact boundary value problem, we start

from the lowest order terms and assign the mass parameters to minimize the difference

between the two models. When an order of smallness is reached so that these parameters

are exhausted and the series terms cannot be reconciled with the classical boundary value

equation, the residual error is minimized and order of the discretization error has been

determined.
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The lowest order terms are in Equation (9) of order dx0 and correspond to the free

conditions at the boundary nodes:

du1
dx
¼ 0,

du2Nþ1
dx

¼ 0: ð10Þ

The first requirement on the mass matrix parameters is obtained by considering

coefficients of the order dx1 in Equation (8b) which forms the following:

�
2

3

d2ui
dx2
� 2� m11 þm12 þm13ð Þui ¼ 0: ð11Þ

The rod mass model would represent the boundary value problem defined in Equation

(6) if one sets:

m11 þm12 þm13 ¼
1

3
: ð12Þ

Enforcing this requirement into the mass matrix results the first-order terms of the

assembled model at the elements’ interface nodes, i¼ 3, 5, . . . , 2N� 1, the elements’ mid

nodes, j¼ i� 1 and the boundary nodes, r¼ 1, 2Nþ 1, to form the rod eigen-equations,

respectively, as

�
2

3

d2ui
dx2
þ �ui

� �
¼ 0, i ¼ 3, 5, . . . , 2N� 1,

�
4

3

d2uj
dx2
þ �uj

� �
¼ 0, j ¼ i� 1,

�
1

3

d2ur
dx2
þ �ur

� �
¼ 0, r ¼ 1, 2Nþ 1:

ð13Þ

Next, to find the remaining two unknown parameters in the mass matrix, we consider

the third-order terms in all nodes:

d2

dx2
1

9

d2ui
dx2
þ � m11 � 3m13 �

1

3

� �
ui

� �
¼ 0, i ¼ 3, 5, . . . , 2N� 1,

�
d2

dx2
1

9

d2uj
dx2
þ �

1

3
�m11 �m13

� �
uj

� �
¼ 0, j ¼ i� 1,

1

2

d2

dx2
1

9

d2ur
dx2
þ � m11 � 3m13 �

1

3

� �
ur

� �
¼ 0, r ¼ 1, 2Nþ 1:

ð14Þ

Using a conventional approach [10,12], one may assign the two remaining unknowns

by satisfying the obtained requirements individually and construct an element mass matrix

that produces eigen-solutions of the fourth-order accuracy. In this article, we propose an

alternative approach and set the residual errors in adjacent nodes equal in magnitude but

with opposite signs. This produces a uniformly distributed error with zero means over the

solution domain and as the eigenvalues are global properties of the assembled model, this

effectively produces no bias error in the estimates of the eigenvalues. The proposed

approach exhausts only one unknown parameter, enabling us to find a more accurate mass

model by satisfying the fifth-order requirements.
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The cumulative error of third-order terms are set to zero by requiring the mass

coefficients to satisfy the following:

m11 �m13 �
1

3
¼ 0: ð15Þ

The two requirements given in Equations (12) and (15) lead to an element mass matrix

with one parameter:

Mðm11Þ ¼ dx

m11
2

3
� 2m11 m11 �

1

3

4m11
2

3
� 2m11

Sym: m11

2
6664

3
7775: ð16Þ

The lumped mass matrix is obtained by setting m11¼ 1/3, and the consistent

mass matrix is produced by selecting m11¼ 4/15. Both of these element models result

in eigen-solutions with the fourth-order accuracy. To find the optimum value for m11,

we consider the fifth-order terms:

7
d4

dx4
1

270

d2ui
dx2
þ �

1

18
�
1

6
m11

� �
ui

� �
¼ 0, i ¼ 3, 5, . . . , 2N� 1,

�
d4

dx4
1

270

d2uj
dx2
þ �

1

18
�
1

6
m11

� �
uj

� �
¼ 0, j ¼ i� 1,

7

2

d4

dx4
1

270

d2ur
dx2
þ �

1

18
�
1

6
m11

� �
ur

� �
¼ 0, r ¼ 1, 2Nþ 1:

ð17Þ

In order to satisfy the fifth-order terms, one requires to set m11¼ 14/45; the determined

mass matrix produces eigen-solutions with the sixth-order accuracy.
Figure 2 shows the eigenvalue convergence of a free rod model using the lumped,

consistent and the obtained mass matrices. As indicated in Figure 2 the order of

Figure 2. Convergence of fundamental eigenvalue of a unit length rod using different mass models.

Inverse Problems in Science and Engineering 1071

D
ow

nl
oa

de
d 

by
 [

Ir
an

 U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

] 
at

 0
4:

48
 1

4 
Fe

br
ua

ry
 2

01
2 



convergence in models formed using lumped and consistent mass models is of fourth order

while the order of error in the model formed using the obtained mass matrix is of sixth

order, consistent with the error analysis preformed in this study. Fried and Chavez [7]

obtained the same mass matrix using a weighted combination of the lumped and consistent

mass matrices (M ¼ ð1� �ÞMc þ �ML) and calculated the optimum value for the

weighting coefficient � ¼ 2=3 using numerical studies. Despite this finding, it is important

to note that in general, the best mass formulation of many elements, e.g. elements with

rotational DOF, cannot be obtained by linear combination of their lumped and consistent

mass matrices [10]. This makes the mass matrix parameterization procedure a crucial step

in the success of obtaining the optimum mass formulation.
The rod example demonstrates the important steps of parameterization of mass matrix

and identification of its parameters by minimizing the discretization errors. Identification

of mass parameters is achieved by minimizing cumulative sums of the residual errors.

The same steps will be followed in Section 3 to construct a super-convergent mass matrix

for a rectangular thin plate element.

3. Rectangular thin plate element

In this section, a new mass matrix is presented for a uniform out-of-plane rectangular

bending plate element with four nodes/12 DOF. The element mass matrix and

its displacement vector are defined as

M ¼ dxdy

M11 M12 M13 M14

M22 M23 M24

M33 M34

Sym: M44

2
664

3
775, d ¼

d1
d2
d3
d4

8>><
>>:

9>>=
>>;, di ¼

wi

Dy �i
Dx �i

8<
:

9=
;, i ¼ 1, . . . , 4,

ð18Þ

where Mij, i ¼ 1, . . . , 4, j ¼ i, . . . , 4 are 3� 3 sub-matrices. The mass matrix has 78

parameters that can be reduced using its geometrical symmetries, total mass and moments

of inertia requirements.
The rectangular plate element, shown in Figure 3, has two symmetry axes and rotation

of mass matrix about these axes does not change its mass distribution:

M¼ TT
xxMTxx, Txx ¼

0 0 0 R

0 0 R 0

0 R 0 0

R 0 0 0

2
664

3
775, R ¼ diagð�1,�1,1Þ, ð19aÞ

M¼ TT
yyMTyy, Tyy ¼

0 S 0 0

S 0 0 0

0 0 0 S

0 0 S 0

2
664

3
775, S ¼ diagð�1, 1,�1Þ: ð19bÞ

Further constraints are imposed on the entries of the rectangular plate mass matrix by

considering rotation of the element about an axis normal to its plane. The element has an
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aspect ratio of p ¼ Dy=Dx and rotation of the element about this third axis by �=2 radians

would change p to 1=p in the formulation:

M 1=pð Þ ¼ TT
zzMð pÞTzz, Tzz ¼

0 Q 0 0

0 0 Q 0

0 0 0 Q

Q 0 0 0

2
664

3
775, Q ¼

1 0 0
0 0 �1
0 1 0

2
4

3
5: ð19cÞ

It will be shown in the following equations that the dependency of mass matrix entries

to the aspect ratio of the element does not affect the low-order residual errors and may be

ignored in the mass formulation without compromising the model accuracy. Therefore, by

transforming the mass matrix using Q, we require the mass matrix to remain unchanged.

Applying the three geometrical symmetry requirements, one obtains a mass matrix with 14

parameters as

M ¼ dx dy

M11 M12 M13 QRM12RQ
SM11S SQTRM12SQR SM13S

SRM11RS SRM12RS
Sym: RM11R

2
664

3
775 ð20Þ

M11 ¼

m11 m12 �m12

m22 m23

Sym: m22

2
64

3
75, M12 ¼

m14 m15 m16

�m15 m25 m26

m16 �m26 m36

2
64

3
75,

M13 ¼

m17 m18 �m18

�m18 m28 m29

m18 m29 m28

2
64

3
75:

ð21Þ

The total mass and moments of inertia requirements of the element are also imposed

on the mass matrix formulation to reduce the number of its independent parameters. These

requirements are defined using the rigid body modes of the element �R as

�T
RM�R ¼ DxDy diag 1,

1

12
,
1

12

� �
, �R ¼

SAS
A

RAR
SRARS

2
664

3
775, A ¼

1 1=2 1=2
0 1 0
0 0 1

2
4

3
5: ð22Þ

Figure 3. Symmetry properties of rectangular plate element.
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These requirements are satisfied by specifying two more parameters as

m14 ¼
1

8
�
1

2
m11 þm17ð Þ, ð23Þ

m36 ¼
1

48
�
1

4
m11 �m17ð Þ þ m12 þm15 þm18ð Þ � m22 þm16 þm25 þm28ð Þ ð24Þ

and brings the total number of unattributed parameters of the parametric mass matrix

to 12. These 12 parameters are determined by minimizing the discretization errors of

the element formulations. The obtained parametric mass matrix is used along with the

element stiffness matrix to form a parametric free vibration formulation and allowing

identification of the unattributed parameters by minimizing the discretization errors.
Various stiffness matrices are reported in the literature for a rectangular thin plate

element. In this study, we choose the stiffness matrix proposed by Ahmadian, Friswell and

Mottershead (AFM) [12]. Their proposed stiffness matrix is based on the Kirchoff bending

plate theory and is obtained by minimizing the discretization errors in the element

formulation. This stiffness model produces sixth-order errors in the internal nodes when

the aspect ratio of the element is one, i.e. square plate element and errors of fourth

order at other aspect ratios. The other stiffness models reported in the literature produce

fourth-order errors at the best situation.
We assemble the plate elements with area DA ¼ Dx� Dy to create a regular mesh for

a rectangular plate with free edges as shown in Figure 4. In the assembled model,

three discrete eigen-equations for a typical internal node (i, j ) is formed. These discrete

eigen-equations are then converted to continuous series form by defining the deformations

in the neighbouring nodes using Taylor series expansions of deformations in node (i, j ):

di�1, j�1 ¼ di, j þ
X1
n¼1

1

n!
�Dx

@

@x
� Dy

@

@y

� �n

di, j: ð25Þ

This process transforms the discrete finite element equations into three continuous

eigen-equations having terms of increasing order of smallness OðDx2n,Dy2nÞ, n ¼ 1, 2, . . . .

First, we try comparing the second-order terms with the classical plate eigen-equation, and

if it is satisfied at that order of smallness, we proceed to investigate the fourth-order terms,

and so on, until the unattributed mass parameters are exhausted.

Figure 4. Assembled plate model, node numbering and their DOFs.
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The equations result from the second-order terms in the Taylor series corresponding to

lateral DOFs of the mid node (i, j ) represent the Kirchoff plate eigen-equation:

DA
@4w

@x4
þ 2

@4w

@x2@y2
þ
@4w

@y4
� �w

� �
¼ 0: ð26Þ

For the sake of simplicity, the subscripts i, j of w are omitted. Also, it is worth

mentioning that the second-order terms corresponding to the rotational DOFs are zero.
Next, we consider the fourth-order terms in internal nodes, from which we obtain

DA2

15

1

p

@2

@x2
þ p

@2

@y2

� �
@4w

@x4
þ 2

@4w

@x2@y2
þ
@4w

@y4
�
1

4
240 m15 þm18ð Þ½

�
þ 60 m17 �m11ð Þ þ 15��wÞ ¼ 0 ð27aÞ

pDA2

15

@

@y

1þ 1=p4

2

@4w

@x4
þ 2

@4w

@x2@y2
þ
@4w

@y4
�
1

4
240 m16 þm12ð Þ½

�
þ 60 m17 �m11ð Þ þ 5��wÞ ¼ 0 ð27bÞ

DA2

15p

@

@x

@4w

@x4
þ 2

@4w

@x2@y2
þ
1þ 1=p4

2

@4w

@y4
�
1

4
240 m16 þm12ð Þ½

�
þ 60 m17 �m11ð Þ þ 5��wÞ ¼ 0 ð27cÞ

when p¼ 1, the AFM stiffness matrix [12] has a fourth-order accuracy and, hence,

the discretization error is of sixth order in the internal nodes. These equations represent

the Kirchoff plate eigen-problem if we restrict the entries of mass matrix as

m15 þm18ð Þ þ
1

4
m17 �m11ð Þ þ

11

240
¼ 0 ð28aÞ

m12 þm16ð Þ þ
1

4
m17 �m11ð Þ þ

1

240
¼ 0: ð28bÞ

These two requirements reduce the number of unattributed parameters of the mass matrix

to 10.
The first-order equations associated with boundary nodes on plate edges revolve free

boundary conditions:

@2w

@x2
þ �

@2w

@y2
¼ 0,

@2w

@x2
þ 2� �ð Þ

@2w

@y2
¼ 0,

�
@2w

@x2
þ
@2w

@y2
¼ 0, 2� �ð Þ

@2w

@x2
þ
@2w

@y2
¼ 0,

ð29Þ

while the second-, third- and fourth-order terms create Kirchoff plate eigen-equations.

Similarly, the terms corresponding to the plate four corner nodes create plate eigen-

equations up to the third orders.
Next, we consider fourth-order terms on the corner nodes, fifth-order terms on the

plate edges and the mid nodes, sixth-order terms. These three different order terms
effectively create discretization errors of the same order due to number of nodes associated

with each term. On physical grounds, we start with minimizing the mid nodes, sixth-order
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terms, based on the fact that the errors on the boundaries have less effect on the higher

modes of the plate.
The sixth-order terms contain three equations, each corresponding to one of the

internal nodes’ DOF. These equations are functions of element aspect ratio of orders 1/p2,

p0 and p2 and as the aspect ratio is an independent parameter, we select to minimize the

discretization error in each order independently. The terms with coefficient p0 are as

follows:

DA3

1800

@4

@x2@y2
8
@4w

@x4
þ 15

@4w

@x2@y2
þ 8

@4w

@y4
� ��w

� �
, � ¼ 1800 m11 � 4m15 �

11

60

� �
, ð30aÞ

DA3

1800

@3

@x2@y
4
@4w

@x4
þ 20

@4w

@x2@y2
þ 4

@4w

@y4
� ��w

� �
, �¼ 3600

1

60
þm15 �m22 �m25 � 2m29

� �
,

ð30bÞ

DA3

1800

@3

@x@y2
4
@4w

@x4
þ 20

@4w

@x2@y2
þ 4

@4w

@y4
� ��w

� �
: ð30cÞ

It is obvious that by assigning any values to the unattributed mass parameters, neither

the residuals of sixth-order terms in the mid nodes nor their sums will vanish. Residuals in

Equation (30), apart from some constants, are given as

8� � 15� 2� 8� �
4� � 20� 2� 4� �
4� � 20� 2� 4� �

2
4

3
5

@4w

@x4
@4w

@x2@y2

@4w

@y4

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð31Þ

Column sums of the coefficient matrix in Equation (31) are minimized to reduce the

cumulative (bias) error in estimates of equation of motion coefficients in each node.

Minimizing these cumulative errors in least squares sense leads to

�þ 2� ¼
71

3
: ð32Þ

On the other hand, the row sums represent the residual errors and minimizing them

defines the coefficients � and � uniquely. The obtained solution is consistent with the

results obtained in Equation (32) and leads to two more requirements on the mass

parameters as

m11 � 4m15 ¼
1013

5400
,

m22 þm25 þ 2m29 �m15 ¼
7

900
:

ð33Þ

1076 H. Ahmadian and S. Faroughi

D
ow

nl
oa

de
d 

by
 [

Ir
an

 U
ni

ve
rs

ity
 o

f 
Sc

ie
nc

e 
&

] 
at

 0
4:

48
 1

4 
Fe

br
ua

ry
 2

01
2 



Next we consider the sixth-order terms in the internal nodes with coefficient 1/p2 and

p2. The terms with coefficient 1/p2 and p2 are similar and only those with coefficients p2 are

reported here as

p2DA3

6300

@4

@y4
35
@4w

@x4
þ 21

@4w

@x2@y2
þ
45

4

@4w

@y4
þ 2100 m12 �m16 �

1

40

� �
@2w

@x2

� �
,

p2DA3

6300

@3

@y3
35
@4w

@x4
þ 56

@4w

@x2@y2
þ 20

@4w

@y4
þ 4200 3m25 þ 3m28 þm16 �m12 þ

1

24

� �
@2w

@x2

� �
,

p2DA3

180

@7w

@x3@y4
: ð34Þ

Residuals of Equation (34), apart from some constants, are given as

35� 	 21� 2	 45=4� 	

35� 
 56� 2
 20� 


0 0 35

2
64

3
75

@4w

@x4

@4w

@x2@y2

@4w

@y4

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
, 	 ¼ 2100 m12 �m16 �

1

40

� �
,


 ¼ 4200 3m25 þ 3m28 þm16 �m12 þ
1

24

� �
:

ð35Þ

Similar to the previous steps, first column sums of coefficient matrix in Equation (35)

are minimized to reduce the bias errors in estimates of eigen-equations; then, the row sums

of residuals are minimized. This leads to two more requirements on the mass parameters as

m12 �m16 ¼
256

8400
, 3 m25 þm28ð Þ þm16 �m12 ¼

329

28800
: ð36Þ

Applying all these requirements reduces the number of unattributed parameters to six.

The remaining mass parameters are obtained by minimizing the errors of fifth-order terms

on the boundary and fourth-order terms on the corner nodes in a similar manner as

described above. However, unconstraint minimization of the errors leads to a mass matrix

which is not positive definite. To remove this obstacle, one may minimize these error terms

subject to positive definiteness of the element mass matrix. The constraint minimization

problem is solved numerically using genetic algorithm and leads to the following

parameters:

m11 ¼ 0:1346, m12 ¼ 0:0215, m22 ¼ 0:0089,

m23 ¼ �0:005, m25 ¼ �0:0013, m26 ¼ �0:0023:
ð37Þ

The obtained mass model along with its companion stiffness matrix produces

discretization errors of sixth order in the internal nodes of the plate. The discretization

errors on free edges and free corners are of the fifth and fourth orders, respectively. It is

important to note that the existing finite element models produce fourth-order

discretization errors in the internal nodes of the plate. The performance of the obtained

mass matrix and its convergence rate in calculating the plate eigenvalues are demonstrated

in Section 4.
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4. Numerical case study

Performance of the proposed mass matrix is demonstrated by comparing its convergence
properties against other mass formulations in numerical case studies. In these studies,
eigenvalue predictions using different mass formulations for thin plates with various
boundary conditions of simply supported, clamped, free and a combination of them are
compared. The convergence rate of each formulation is determined by evaluating
the errors in eigenvalue estimations using reference eigenvalues reported in [13]. The
finite element formulations used in this study are those proposed by AFM and
non-conforming element MZC; reference [12] provides error analysis for different
rectangular plate elements and finds that among all consistent models, the MZC

Figure 5. Error in estimation of first eigenvalue of a simply supported square plate.

Figure 6. Error in estimation of first eigenvalue of a clamped square plate.
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formulation predicts the plate eigenvalues more accurately. The MZC plate element
produces fourth-order errors while the errors in AFM model in the internal nodes are of
sixth-order.

The errors in the estimates of the fundamental mode are calculated for square plates
with various boundary conditions and are shown in Figures 5–8. As expected, the MZC
model predictions have a slower rate of convergence and the proposed mass model of this
article provides the highest rate of convergence in predictions of the fundamental mode.
The AFM model and the proposed one share the same stiffness matrix and their difference
is in their mass formulations. In the AFM model, the error terms are minimized in a least
squares sense [12], creating a bias error in coefficients of equation of motion. In the
proposed mass formulation, the sum of errors in equations of motions in each node
is minimized. This effectively distributes the error with near-zero means over the solution
domain creating more precise eigenvalue estimates using the proposed mass matrix.

Figure 8. Error in estimation of first eigenvalue of a square clamped-free simply supported
free plate.

Figure 7. Error in estimation of first eigenvalue of a free square plate.
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Another study is performed to evaluate the convergence sensitivity of these element
models to the element aspect ratio. In this study, eigenvalue predictions for a rectangular
plate (p¼ 2) with clamped, simply supported and free boundary conditions are performed
using AFM, non-conforming MZC consistent mass formulation and the formulation
proposed in this article. The errors in estimations of the rectangular plate fundamental
mode are calculated with various boundary conditions and are shown in Figures 9–11.
The results show the convergence rate of proposed mass model is insensitive to the element
aspect ratio, and it produces much faster convergence compared to the existing models.

The super-convergent eigenvalue non-consistent plate element proposed in this article
improves the eigenvalue estimation procedure and minimizes the errors in model

Figure 9. Error in estimation of first eigenvalue of a clamped rectangular plate (p¼ 2).

Figure 10. Error in estimation of first eigenvalue of a simply supported rectangular plate (p¼ 2).
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prediction at no extra computational cost compared to the conventional consistent
element formulations.

5. Conclusions

An accurate plate element mass matrix is obtained by minimizing the discretization error
in the finite element formulation. By employing an inverse approach, we consider what
criteria the element mass model must satisfy and form a parametric family of admissible
mass matrices. The parameters of the mass model are then obtained by minimizing the
discretization error in the element formulation. In minimizing the discretization errors,
special attention is paid on reducing the sum of errors in each node, hence creating a model
with minimum bias errors. The benefit of using the proposed approach is that it produces a
model with highest convergence rate for the element under consideration. The improve-
ments in estimating the eigenvalues are presented using numerical case studies. The added
accuracy in the new model requires no extra computational effort and it may be
implemented easily into existing finite element codes.
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