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Abstract

This paper deals with the stability of a beam subjected to thrust. The thrust acts upon the structure as a follower
non-conservative force, thus the structure can lose its stability by flutter or divergence depending on the system parameters.
The model consists of two beams interconnected by a nonlinear joint. The joint is a combination of linear and nonlinear
springs and a damper. Follower force is assumed to be linearly distributed along the length of beam, so the governing equa-
tion has variable coefficients, so that only an approximate solution is possible. We divided the beam into a number of seg-
ments so that force distributions could be approximated as constants and then we used the method of multiple scales to

obtain the analytical solution of the system. The flutter and divergence and post-critical behavior are then obtained.
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Introduction

Free-free beams have been intensively exploited to simu-
late the stability behavior of flexible missiles and/or space
structures propelled by end rocket thrust. Beal’s paper
(Beal, 1965) deals with a uniform beam under constant and
pulsating thrust including a simplified control system. Due
to the non-conservative nature of the end thrust a consistent
dynamic analysis is needed to predict correctly the stability
behavior (Bolotin, 1963; Barsoum, 1973).

However, different critical behaviors arise if non-
conservative loads (e.g follower forces) are applied, such
as those caused by the thrust of rocket and jet engines, dry
friction in automotive disk and drum-brake systems. Under
these circumstances the loss of stability may happen either
by divergence or by flutter, depending on the mechanical
propetties of the structure. In addition, when conservative
and non-conservative loads are applied simultaneously, the
critical boundaries in the control parameters space show an
interaction phenomenon (Langthjem and Sugiyama, 2000).
Namely, the critical conservative load increases in the pres-
ence of non-conservative forces, while the critical non-
conservative load decreases in the presence of conservative
forces. Several reviews of problems involving non-
conservative forces have been published (Herrmann, 1967,
Sundararaian, 1975) as well as books on this subject,
(Panovko and Gubanova, 1965; Ziegler, 1968; Leipholz,
1980; Bazant and Cedolin, 1991). However, the attention has

been mainly focused on the linear stability analysis and very
little over the post-critical behavior. Recently the authors
devoted particular attention to the study of multiple dynamic
bifurcation points for discrete systems (Luongo et al., 2002).
Paolone et.al. (2006) analyzed the stability of a cantilever
elastic beam under the action of a follower tangential force
and a bending conservative couple at the free end. Nonlinear,
partial integro-differential equations of motion are derived
and expanded up to cubic terms in the transversal displace-
ment and torsional angle of the beam. They also studied the
linear stability of the trivial equilibrium, revealing the exis-
tence of buckling, flutter and double-zero critical points.
Then the post-critical behavior of a cantilever beam under
simultaneous action of conservative and non-conservative
loads was analyzed. The bifurcation equations for simple
buckling (divergence), simple flutter (Hopf) and double-
zero (Takens—Bogdanova—Amold) bifurcations are derived
by means of the multiple time scales method. Finally, some
numerical results are derived and the bifurcation scenario of
the beam is discussed.

Mladenov and Sugiyama (1997) considered a free-free,
flexible two-beam system, where the two beams are con-
nected by two springs and two dampers, one of each
(coupled in parallel) for the rotational motion, and one of
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each for the parallel motion. Bending-flutter, post-flutter-
divergence and folding instability may occur, depending
on the system parameters.

The effect of axial compressive inertia forces due to
large thrust/accelerations in a variable geometry, variable
mass single stage rocket has been investigated by Joshi
(1995). Starting from an elementary beam formulation for
variable geometry rocket subjected to variable axial com-
pressive inertia forces, solutions for the transverse vibration
have been obtained by converting the variable coefficient
governing equation into a set of constant coefficient equa-
tions by dividing the rocket structure into piecewise con-
stant property segments. The exact solution for vibration
was obtained within these segments by using beam func-
tions. The results obtained for a typical single stage rocket
bring out the fact that the axial compressive forces arising,
due to thrust, significantly lower the transverse vibration
frequencies of practical variable mass rockets.

Ahmadian and Jalali (2007) have presented a nonlinear
model for bolted lap joints and interfaces that is capable of
representing the dominant physics involved in the joint
such as micro/macro-slip. The joint interface was modeled
using a combination of linear and nonlinear springs and a
damper to simulate the damping effects of the joint. An
estimate of the response of the structure with a nonlinear
model for the bolted joint is obtained using the method of
multiple scales. The parameters of the model, i.e. the spring
constants and the damper coefficient, are functions of nor-
mal and tangential stresses at the joint interface and are
identified by minimizing the difference between the model
predictions and the experimentally-measured data. The
model that is utilized in this paper is exactly the same as
Ahmadian and Jalali’s nonlinear model for lap joints.

Model

The bolted structure considered in this work is shown in
Figure 1. It includes two identical linear Euler-Bernoulli
free-free beams connected at one of their free ends by a
bolted joint. The bolted joint interface is modeled with a
nonlinear spring which resembles the softening effect of
the joint interface at certain level of stresses in the interface
by using the results of Ahmadian and Jalali (2007). The
Euler-Bernoulli beam assembly considered here has a non-
linear flexibility at x = L/2 (see Figure 1). The equations of
motion for each part of the beam are:
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Figure 1. The free-free beam/model with a lap joint.

where EIL, m, Wi(x,t), Wa(x,t), F(t) and P(x) are flexural
rigidity, linear mass density, lateral displacement at each
of the two parts of the beam, and the point excitation on the
beam at x = 0 and the follower force, respectively. The
boundary conditions of the problem are defined as

62W1(0, t) _ 63W1 (O,t) -0

Fw(L,t) OWi(L,¢)
ox? a7 B

o3 Ox?

=0,
(2)

Next we turn our attention to the equilibrium requirements
at the joint interface. To simplify the problem, one may
neglect the mass effects of the joint interface and equate the
bending moments and the shear forces of the two beam
parts at the interface as
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ox )y
where K; Ky K; and C are linear translational spring, linear
torsional spring, cubic torsional spring and torsional vis-
cous damper of joint, respectively. The values of these
parameters are tabulated in Table 1. The cubic stiffness and
viscous damping terms represent the saturation phenom-
enon and energy loss at the joint interface in the presence
of high-level vibrations. In the following, a solution to the
above problem using the method of multiple scales is
presented.

+ Kp(

— K;(

The Analytical Solution

In this section, a solution of the governing equations stated
in equation (1), satisfying the equilibrium requirements at
the joint (equation (3)), along with the associated boundary
conditions is sought (equation (2)). The method of multiple
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Table 1. The joint and beam parameters.

K3 (N/m3)

m (Kg/m) C (N.s/m)

K; (N /m) Ko (N /rad)

2.145 0.281 3.72e8

8.09¢8(1+0.05i) 3264(14-0.05i)

scales is applied directly to these equations. Solutions for
each part of the beam are assumed of the forms:

Wl (x7 t 8) =
W2(x7 t 8) =

Wio(x,To, Th) + eWii(x, To, Th),

Wao(x,To, Th) + eWar(x, To, Th ), @
where Ty = t is the fast time scale, and 7; = &t is the
slow time scale. Behavior of the system is investigated
near the resonance frequency. The linear undamped
theory will predict unbounded oscillations at the reso-
nance point no matter how small the excitation force is.
In the considered system these large oscillations are
limited by the damping and nonlinearity. Thus to obtain
a uniformly valid approximate solution of this problem,
one needs to order the excitation so that it will appear
when the damping and the nonlinearity appear (Ahmadian
and Jalali, 2007). Therefore the forcing function, the non-
linear stiffness and the damping due to micro-slips are
ordered as

K;

F
mo f——w,

8KN. (5)
The derivatives with respect to the new time scales are
defined as

a* G)

d
— =Dy +¢Dy, @:D20+2D0D1, D,,:W.

7 (6)

Inserting the new variables into the system equations and
sorting the obtained equations based on the orders of ¢ one
obtains:

Order ¢°

The governing equations:
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And equilibrium conditions:
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Where ()’ = 0/0x.

Wi (S, To, Th)).

Linear Solution

Assuming the response of the structure is dominated by a
single mode, Y;(x), one may write the solution to the set
of equations of order %as

Wio(S. To, Th)
Wao (S, To, Th)

= (A(T))e®™ + cc) Yy (x),

) 13
= (A(T))e®™ + cc) Ya(x), (13)

where o is the natural frequency of the structure and cc is
the complex conjugate term for each part of the solution.

The assumed solution transforms zero order equations to
the following form:
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- 4 ma’
i=12 1= i

(14)

., P
Yi‘”+% YT - 2*Y =0,

It can be seen that the governing equation in this case has
variable coefficients, namely the axial follower force
P(x). It is clear, therefore, that only an approximate solution
is possible. An iterative scheme for solving equations with
variable coefficients, based on Galerkin’s formulation, has
been described in many papers (Beal, 1965; Wu, 1975).
However, in the present case it is more convenient to use
beam functions along with finite segments in view of the
fact that admissible functions satisfying the boundary con-
ditions (Joshi, 1995). Therefore, in the present study the
structure is divided into a number of segments, within
which the follower force can be approximated as constants.
Such an approach has the advantage that it is capable of
taking into account fairly complex beam configurations just
by increasing the number of segments. Furthermore, these
simplifications lead to governing equations with constant
coefficients which can be solved exactly in terms of beam
functions. The non-dimensional equation of motion for the
i th constant beam segment can then be written as:

i=1:N.
(15)

(8*%:/0x}) + ai(@*Y,/0x]) — 2*Y; = 0

Here a; {= P(x;)L?/(EI)} is the dimensionless follower
force and A* {= mw?L*/(EI)} is the dimensionless fre-
quency parameter for the i th segment. The variable x; is the
dimensionless length coordinate such that it takes values
from 0 to /(= L/N) for all segments, where /is the length
of each segment. The follower force P(x;) is defined as the
inertia compressive force acting on the i th beam segment
and is calculated at the centre of gravity of the segment
by summing up the inertias of all the segments preceding
the current one and taking the average inertia force for the
current segment. The expressions for P(x;)for the constant
acceleration trajectory can be written as

P(x;) = apA (0.5] + IX_: I 16)

a=P/(mL)

where q is the constant acceleration. The general solution
of equation (15) can be written in terms of beam functions
as

Y; = 4; cosh Ay;%; + B; sinh A:%; + C; cos AxiX; (17)

+ D; sin Aoix;,
where 4;, B, C; and D, are arbitrary constants and 4;; and
A; are roots of the characteristic equation for each segment,
obtained as

B={@- o —aln A= {@+a s al2
(18)

It is to be noted here that there will be a total of 4N
unknown coefficients for N segments. The characteristic
equation for the natural frequencies is obtained by applying
the boundary conditions at the two ends of the beam and
continuity conditions between the segments of the beam.
The boundary conditions are

n

,000=Y(0)=0, Y=Yy =0; (19

The continuity conditions are

Yi(D) = Y%1(0), Y, () =Y,,(0), i=1:N—1, i£N/2

Y (1) =Y,,00), ¥'(1)=Y,(0),

(20)
And continuity conditions in joint are
() =Y,0), Y'0)=Y,0), i=N/2
Y () = g2 (4,,0) @), ¥/ () = F () ~ %ia 0),
(21)

It can be seen that there are four boundary conditions and
4(N-1) continuity conditions. The transcendental charac-
teristic equation is represented by a 4N x 4N determinant
the zeros of which give various values of the frequency
parameter A. These values of A are obtained by the
Regula-Falsi method of locating zeroes of a function. This
involves identifying the sign change of the function for two
trial values of 4 at which point the gap is closed succes-
sively until convergence is reached. In the present case,
convergence is assumed to be reached if the difference
between the two values of A is found to be less than
0.001. The converged value of the frequency parameter A
is then used for generating the free vibration mode shape.
It is to be mentioned here that, as the governing equations
have variable coefficients, the accuracy of the converged
eigenvalues also depends on the number of segments
included in the solution.

The numerical exercise in the present study has been
carried out with the help of a total of sixteen segments of
constant force as an acceptable approximation of the com-
plex full scale beam.

Convergence results in Table 2 show the accuracy of
modeling the linearly varying inertia force approximately
as stepwise constant. It is seen that with only twelve seg-
ments, the analysis shows convergence for frequency.

Mode shapes of system shown in Figure 2 for three vari-
ables of force. It is seen that by increasing value of force,
lateral displacement of beam decreases.

For checking the validity of the numerical results in this
procedure, we compare the flutter with the results of the
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Table 2. Convergence of solution for variable follower force versus number of segments.

P=0 P = 5000 P = 10000

N ol ®2 ®3 ol ®2 ®3 ol ®2 ®3

2 104.96 323.38 603.88 89.12 313.07 589.63 73.07 295.87 570.45
4 104.96 323.38 603.88 89.92 312.24 59141 7345 295.32 573.22
8 104.96 323.38 603.88 90.02 309.52 587.32 7448 290.14 569.45
12 104.96 323.38 603.88 91.51 306.03 58591 75.61 287.39 567.31
16 104.96 323.38 603.88 91.51 306.03 58591 75.61 287.39 567.31
Beal (1965). By taking very large values for the joint’s Adjoint Problem

springs and very small value for damper of the joint, we
force the free-free beam’s boundary conditions. The
branches of first and second non-dimensional natural fre-
quencies are plotted in Figure 3. As shown in Figure 3, the
results are shown have good coincidence with result of Beal
(1965).

Buckling. As well known, for the evaluation of the critical
buckling boundaries, it is sufficient to consider only the lin-
ear static parts of equation (15) or let A = 0. The following
ordinary differential equation is obtained:

(0*Y;/ox}) + a;(0°Y: /%) = 0 i=1:N. (22

Solution of equation (22) returns
Yi = Ai —O—B,-x + Ci Cos A.ifi +Di sin lifi, li = \/(7,
(23)

Inserting equation (22) into the boundary and continuity
conditions, a homogeneous linear system is obtained, by
expanding the determinant and setting it equal to zero, the
critical buckling force is obtained that is equal to 102475 N.

Flutter. Flutter occurs when the linear motion is harmonic,
i.e. the eigenvalue is purely imaginary 4 = iw where w is
the non-dimensional linearized small oscillation frequency;
or two natural frequencies are equal. By setting A = iw in
equation (15) and similar to the buckling in 3.2.1 expanding
the determinant and setting it equal to zero, the critical flut-
ter force is obtained. For the second approach, we plot the
natural frequencies versus value of force, so the flutter
occurs as a result of the coalescence of the characteristic
frequencies. Where one branch reaches the horizontal axis,
divergence instability occurs. The results are shown in
Figure 4. In Figure 4(a), the absolute of natural frequencies
are plotted versus follower force and the real parts of them
are plotted in Figure 4(b). It is shown that the first flutter
force is 22587.5 N and the second flutter force is 42965
N. They are obtained respectively by the first and second
approaches explained above. Divergence mode shape is
plotted in Figure 5. Figure 6 shows the real and imaginary
mode shape of first flutter instability.

It is necessary to solve the adjoint problem of the linearized
equation (7), useful to enforce solvability conditions. For
the purpose of computing this adjoint, we will define the
following inner product:

.8 = | Satois 24

The adjoint of our linear operator L*satisfies the following
inner product:

W, L(§)) = (L' (V). ¢) where L(¢)=¢" +P(x)¢",
(25)

Taking the inner product of an arbitrary function of adjoint
Y with the linear operator L, we obtain

VL) = | v+ Pgas. 26

We can obtain the adjoint linear operator by repeatedly
integrating this equation; see that the linear operator
of adjoint system L* is same as the L. The detail of inte-
gration, boundary and equilibrium conditions for adjoint
system are obtained (see Appendix A). The free mode
shapes of adjoint system are shown in Figure 7. Because
of new boundary conditions and equilibrium condition
the joint doesn’t affect to free mode shapes, but by increas-
ing the follower force, mode shapes have been affected
by joint.

Nonlinear Solution

The homogeneous equation (7) has a non-trivial solution;
therefore the non-homogeneous problem equations (10)
to (12) will have a solution only if the solvability condition
is satisfied. To determine this condition, the secular terms
¢; and non-secular terms ¥; are separated by assuming a
solution of the form:

Wi = ¢,(x, T1)e™ + Vi(x, To, T1) + cc.

o (27)
War = @,(x, T )€™ + Va(x,To, T1) + cc,
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Figure 2. Mode shapes of beam versus 3 values for follower
force. The full, dashed and dotted represent 0, 10000 and 20000
(N) respectively.

The excitation frequency Q is assumed to be close to the
natural frequency of the dominant mode which governs the

system response, i.e.:
Q=ow+e¢o; (28)

Substituting equation (27) into the first-order equation (10),
secular terms are obtained as

3007 i 4
."1“‘.1.
¥ 250 | “\_,._ et W Frequency
'é" T == =2'nd K_Frequency
£ \J\\
= 200 A 1
& “
b a2
® L)
L 180 A g
&
=

g

a0 80 120 180 200 240

Rondimensional Follower Force

[=]

Figure 3. First and second branches of non-dimensional natural
frequencies of free-free beam. The circle point denoted the
result of Beal (1965).

v PX) i 4 f ; iw
v N A L icgt _ ~n~ .
& + EI ¢ — A ¢, 25(75)9 2EI YiDi4 ;
»  P(x) i iw
¢§V+% 121_’14452:—25)’20114;

(29)

By enforcing the solvability condition to equation (29), this
equation obtained as

2iwy mDy4 = ﬂiwo((l’;uv/zﬂ - (P;tN/Z)((P,lN/2+1 - (P;N//z)

A— —EAZAKN((PAN/ZJA - (PAN/Z)((PIN/ZJA - (P1N/2)2

iocTi.

7 i f
((PlN/2+1 - (PlN/z) - 5‘/’41(0)9 ;
(30)

In extracting the solvability condition, one considers only
the secular terms, i.e. the coefficient of &°%and its conju-
gate, and neglects the coefficient of the other harmonies
such as the third-order super-harmony e¢**’°and its con-
jugatee T, assuming for the complex amplitude
A(TL, .. .) the polar form

4= %a(Tl)ei‘%Tl) y=0T1 — B (31)
By substituting equation (31) and separating real and ima-
ginary part, in steady-state (@ = y = 0) equation (30) is sim-
plified to the following response and frequency equation:

1 . 1 . 1 .
EwoZ(a/ + iﬁ/)e’ﬁ - Eiauwo Qe’ﬁ 3 3 Ky Se'f

1KySa®,,  (fou(0)\’
4 ;V;oz )2]*( wLZz >
(32)

Lou e P22 1 o+
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where

Z=2m;Q= ((thN/ZJrl - (P;tN/Z)((P,lN/2+1 - (P,IN/Z) ‘x:L/2§

3 ’ ‘ 7 7
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Figure 5. The divergence mode shape.
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Figure 6. The flutter mode shape.solid line is real part and
dashed line is imaginary part.

Equation (32) shows the dependency of amplitude and fre-
quency in this case. a and f§ versus 7; measured near first
natural frequency of beam; with three value of force
(0-4000—8000 N); are shown in Figures 8 and 9 respec-
tively. It is seen that the joint has softening effect, because
sign of § is minus. Too, by increasing the follower force,
variation of amplitude a and phase f§ decrease.

The steady state amplitude (a) versus detuning
parameter (g) is shown in Figure 10. The curve clearly
shows softening effect due to the joint properties. By
increasing the follower force the softening effect of the
joint vanishes.
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Figure 7. Free mode shapes of adjoint problem.

Stability Analysis

In this section, the post-critical analysis is performed for
the two forms of instability, namely, around simple buck-
ling (divergence) and simple flutter (Hopf).

Bifurcation Analysis

The multiple scale method is applied to analyze the sys-
tem’s behavior around a divergence point and Hopf point.
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e

1 o v = P TOTTLT o

1 : L 1 1
L] 50 5] T Bd &0 100
Time scale T1

os L L L
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Figure 8. Amplitude of response versus time scale T,. The full,
dashed and dotted represent 0, 4000 and 8000 (N) respectively.
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Figure 9. Frequency parameter 8 versus amplitude a. The full,
dashed and dotted represent 0, 4000 and 8000 (N) respectively.

Perturbation parameter ¢, is introduced as a measure of the
distance of a given point from the bifurcation point in the
parameter follower force P.

Different e-dependent time-scales T = &¥¢ are defined
and the state variable Y(x) are expanded in Taylor series
of ¢. By equating terms of the same power of ¢, linear per-
turbation equations having the same operator are obtained,
and then solved in sequence for the series coefficients.
Except for the lower-order eigenvalue problem, higher-
order equations are nonhomogeneous; they admit a solution
if and only if the known term belongs to the range of the
singular operator, i.e. if it is orthogonal to the solutions
of the adjoint homogeneous problem (26).
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Figure 10. Steady state amplitude a versus detuning parameter
o. The full, dashed and dotted represent 0, 4000 and 8000 (N)
respectively.

The load P is taken as bifurcation parameter, and its
deviation from the bifurcation value P, denoted by

MIP—P():O(G).

The equations of motion are rewritten as

0 . (d*Yi/dx}) + ai(d Yy /dx?) +
i=1:N

U (@*Yy/dx}) + ai(d Yy /dx2) +
— 2 (pA/EIDyD, Yy;

— u(0a;/OP)p, (d*Yy;/dx}).

(pA/EL\D}Y;; = 0

(pA/EI)D}Y; =

(34)

With the boundary and continuity conditions that are
shown in Appendix B.

(a) Post buckling. When A = 0, equation (34-1) fur-
nishes Yj; = (T, ...)@;(x).Substituting this equation in
equation (34-2) and boundary condition returns

(d*Yy/dx}) + ai(@* Yo/ d%}) + (pA/EI) Dy Yy =
~2(pA/E)g,Dio — u(0a;/OP), (d;/d50) .
(35)
By enforcing solvability condition, the following bifurca-

tion equation for buckling is obtained

& = uR 0+ Ryol®, (36)

Where R; and R, are real parameters defined as follows:
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Figure 11. (a) Post-critical buckling steady amplitude behavior
versus u. (b) Amplitude a versus nonlinear stiffness K3.

—EI I Qo ¥t
1 2pA {Z J Al ap Po(pll) - Z

i=1ZN/2
Oa;

& (ouon+ @i — T

op )7

(@gi1P11 T (PAi+1(P1i+1(0))H
I aa' i !
“‘2’7{(6_1;)3, [04:01;(0) + (PAi(Pli(O)”i:IN/Z,N ;
—K3 ’
R, = 2pA ((PA_N/2+1 (PAN/2)((P1N/2+1 (P1N/2) ;

(37)

In Figure 11(a), it is shown the bifurcation diagram
obtained from the amplitude modulation equation, equation
(36), in buckling points. From this Figure it clearly appears
that the divergence bifurcations are of overcritical (stable)
type, with the steady amplitude o decreasing with Kj.
Hence, the variation of follower force has a stabilizing
effect on the post-critical behavior as well as on the buck-
ling linear boundary; and also, the curvature of the bifur-
cated paths changes monotonically with the bifurcation
point. The nonlinearities are stronger for low values of
K3 and by increasing of K3 nonlinearities will become
weaker. This behavior is also appreciated in Figure 11(b),
where the amplitude « is plotted versus the stiffness K3 for
a fixed value of the parameter u.

(b) Post flutter. When A = iwy, equation (34-1) fur-
nishes ¥y; = A(Ty, ...)@;(x)e™ + cc. where A(TI,...)
is a complex amplitude and c.c. denotes complex conju-
gate. Substituting this equation in equation (34-2) and
boundary condition returns
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(@*Yyi/d5}) + ai(d*Yy/dx]) + (pA/E DY
= —2iawo (pA/EI)@,D\A — p(0a; /OP)p, (d*¢;/dx;) A
(38)
By enforcing solvability condition and assuming for the

complex amplitude A(T1, .. .) the polar form

A= %a(n)e"ﬁ”ﬂ (39)

the following bifurcation equation for the flutter is obtained
(40)

where Cland C2 are the real parts of the following complex
coefficients, respectively:

& = puCio + Cot’,

N-1

N i
aa, 2 Oa;
Puilzp P 1;) [(_)P (@401
/ i aalJrl

+ @uou) — (5~ oP )Py (@ai 19111 +(PA1+1(P11 1(0)]}

6a,- v
- D{(a_P)Po [04:01;(0) + (PAi(Pli(O)Hi:l,N/z,N
— (Ciwo/EI)(@an/211 — Pans2) (@injai1 — Piwja);

—K3
G _3D[2EI ((PA_N/2+1 (PAN/2)((P1N/2+1 (P1N/2)

(¢1N/2+1 - (PIN/2)};
D = EIi/Qwom);
(41)

The limit cycles amplitudes obtained from equation (40)
and then are plotted in Figure 12(a) for bifurcation points
around the flutter point. From this Figure clearly appear
that the hopf bifurcations are of supercritical (stable) type,
with the steady amplitude a decreasing with K3. Hence, the
follower force has a stabilizing effect on the post-critical
behavior as well as on the flutter linear boundary; and also,
the curvature of the bifurcated paths changes monotoni-
cally with the bifurcation point. Similar to previous section,
the nonlinearities are stronger for low values of K3 and by
increasing of K3 nonlinearities will become weaker. In Fig-
ure 12(b), the limit cycles amplitudes « is plotted versus the
stiffness K3 for a fixed value of the parameter u = 0.5.

Conclusions

The stability of free-free jointed beams under action of non-
conservative follower force has been discussed. The beam
has been considered as a one-dimensional continuum
model with a local rigid structure, capable of describing the
mechanical behavior of the body in finite displacement
regime. Nonlinear, partial differential equations of motion
have been derived. The joint is combination of linear and
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Figure 12. (a) Bifurcation diagram around different Hopf points.
(b) Amplitude o versus nonlinear stiffness K3.

nonlinear springs and a damper. Follower force is assumed
to be linearly distributed along the length of beam, so the
governing equation has variable coefficients, so, that only
an approximate solution is possible.

We divided the beam to number of segment that force
distributions can be approximated as constants and then
we use method of multiple scale to obtain analytical solu-
tion of system.

The linear stability of the trivial equilibrium reveals the
existence of buckling, flutter critical points. The spectral
properties and critical modes of these two instability
mechanisms have been derived and discussed. Both the
nonlinearity and damping of joints have a positive effect
on the stability status of the structure by decreasing the
amplitude of vibration. The damping of a joint does not
affect on the boundary of stability but decreases the ampli-
tude of vibration.

The bifurcations of this problem have been analyzed.
For different values of follower force the system undergoes
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buckling or flutters. By using the multiple scale method, a
perturbation analysis has been performed to investigate the
system behavior around bifurcations in the parameter
space. The relevant bifurcation equations have been
numerically solved, and the whole scenario displayed in the
parameter space. The analysis calls for solving two eigen-
values problems, the direct and the adjoint problems. It has
been found that buckling and flutter are super-critical type
close to these points.

Appendix A. Boundary and Equilibrium
Conditions for Adjoint Problem

L L
J l//(¢”” +P(S)¢H)ds — J l//¢””ds
0 0

. (A-1)
+ J YP(s)d"ds =1+ 11
0
L N N
_ J |/1¢””ds — Z (J l/lqulIVdS) = Z
0 -1 Jha i=1
5
"~ il 8,8} || W )

1

(Z(l/f;(bm Vi ¥ ¢ — 01 )

g

N
>
+|) vroas)

N
ZPI l/’l¢x l/’x¢1 1)

i=1

=~

W gas 11 = [ ypoig'as

I; N
(P JI l/l,¢HdS ZPI l/’¢x l/l,¢, 5
i1 i=1

Rl

=~

-+ J V'P(s)pds
0
(A-2)

L
I+1= J W+ U'P(s)) b ds

0

N ' !
=Dl bl b= (a3

1
+Piid — idi)l
) =y + Py
Boundary conditions:
¥,(0) + a1y, (0) =0,
Uy (D) + an¥iy(l) =0,

¥, (0) +a,(0) =0,

Uy (D) +anipy () =0,
(A-4)

Continuity conditions:

Uill) =¥31(0), () =¥;,4(0)  i=1:N—1, i#N/2
Ui (D) + ey (1) = ;1 (0) + @114 0),
Uy (D) + ay(D) = ¥ 1 (0) + a1y (0),

(A-5)

Continuity conditions in joint:

V(D) +a(1) = ¥;. 4, (0) + a1 4 (0),

K K
i=N/2. =R =2

O+ awil) = ¥11(0) + @i 0),
10) - arar 1 (0) = ZWy(D) — ¥4 (0)),
11(0) + @11 (0) = Ry, (0) — i(D);

(A-6)

v
Vi
v

Appendix B. Boundary and Equilibrium
Conditions for Bifurcation

Boundary conditions:
Y,,(0) — a1 Y21(0) = u(da1 /OP)p, Y11 (0),
Y, Y,,(0) — alel(O) N(aal/ap)POYu(O) B-1)
Yoy(l) — anYay (1) = M(aaN/aP)poYlN(l \
Yon() — an Yoy (1) = p(Bay /0P) 5, Y1y (1),
Continuity conditions:
YZI ) = Y2:11(0), Y2,i(l) = Y2,i+1(0)
=1:N-1, i#N/2
2i( ) — a;Yai(1) — p(0a; /OP)p, Yis(l) = Yy, (0)
—a;-1Y24:1(0) — p(0a;/OP)p, Y1:+1(0),
Y1) = aiYy,(1) — u(0ai/OP)p, Yyy(1) = Yy, (0)
- ai+1Y2,i+l (0) - y(@a,-/@P)PoYi 1+1(0),
(B-2)

Continuity conditions in joint:

" "

Y1) —aiY(l) — y(@a,-/@P)PoYl,-(l) = Y2i+1(0)
—a 1sz+1( ) — u(0a;/0P)p, Y1;1(0), i=N/2
Yz”x,() a;Y. 2; (1) — @ al/aP)Po 1;(1) Y2ﬂi+1(0)

u( a,/@P)Po 1x+1(0)

a,+1Y2,+1(0)
1 K
! Yo(l) — Y241(0))

Yy (1) — aiY2i(l) = ﬁ(
+ 1(0a; /OP)p, 1i(l)v
Yoll) = ai¥ai(l) = 57 (¥411(0) —

K3 /
_E(YIPA(O) -
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