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Physical Realization of
Generic-Element Parameters
in Model Updating
The selection of parameters is most important to successful updating of finite ele
models. When the parameters are chosen on the basis of engineering understand
model predictions are brought into agreement with experimental observations, an
behavior of the structure, even when differently configured, can be determined with
fidence. Physical phenomena may be misrepresented in the original model, or m
absent altogether. In any case the updated model should represent an improved ph
understanding of the structure and not simply consist of unrepresentative numbers
happen to cause the results of the model to agree with particular test data. The pr
paper introduces a systematic approach for the selection and physical realizatio
updated terms. In the realization process, the discrete equilibrium equation forme
mass, and stiffness matrices is converted to a continuous form at each node. By co
ing the resulting differential equation with governing equations known to represent p
cal phenomena, the updated terms and their physical effects can be recognized
approach is demonstrated by an experimental example.@DOI: 10.1115/1.1505028#
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1 Introduction
Finite element model updating@1,2# is employed to bring the

predictions of the model into agreement with experimental ob
vations from a physical structure. This can be achieved provi
that the measured data represent the actual behavior of the s
ture and are not contaminated to an unacceptable level with
dom or systematic errors. In the presence of good quality test
updating procedures should be focused on the sources of dis
ancies between the test and the finite element model. They sh
locate the areas that are mismodelled and provide a more acc
model for them. The accuracy of the updated model depends u
the parameters chosen for updating. The predictions should
sensitive to the chosen parameters, but the parameters thems
must be able to define the phenomena that was either mismod
or not present in the initial model.

There are basically two parameter selection strategies in
literature. A discussion that includes the performance of the
ferent approaches can be found in@3#. One approach is to selec
the geometric or material input data of the finite element mo
and by modifying them improve the correlation between
model predictions and the experiment. The modification can
performed on individual or selected groups of elements. T
method is very popular due to the fact that it can be implemen
in existing finite element codes and more importantly, beca
there is a readily available physical explanation for each modi
term. However the method is incapable of changing the ma
ematical ‘‘structure’’ of the model, so that structural mismodelli
and omitted effects cannot be corrected. Errors of this type incl
the omission of shear effects, stress stiffening and coupling
bending and torsion in beams.

The second strategy, in a contrast to the first, allows change
all entries of the system matrices~or a subset of them!. The
method allows the updated model to reproduce observed beh
exactly, but there is no guarantee that it represents a phy
system and not a meaningless numerical expression that re
duces the test data. A common problem is the loss of positivity
system matrices. The updated matrices may be indefinite and
~semi-!positive definite as required, whereas in the first appro

Contributed by the Technical Committee on Vibration and Sound for publica
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the definiteness properties remain unchanged when the param
are varied over a wide range~for example all positive values o
Young’s modulus!. The definiteness of the model can be preserv
by introducing the rigid body modes of the structure into the u
dating process. This idea was applied at the element leve
assuming the initial model had the correct connectivity patt
and led to the concept ofgeneric elements@4,5#. A generic-
element model is a parametric form of the element matrices
provides for a family of all allowable models of that elemen
Despite many advances, the second strategy cannot alway
used with complete confidence. In many cases a physical ex
nation of the modified terms is not readily available. The upda
model should be able to predict the behavior of the structure
loading and support conditions other than those in the tes
physical explanation of the updated terms ensures that the m
fications are not just numerical values that match the test res
but are justified by engineering understanding of the system
the test carried out on it.

In this article we begin by defining what we mean by gene
elements. In the original work@4,5# parameters were defined i
the modal domain using eigenvalues and eigenvectors of the
tial model at the element level. But, a physical explanation
updated terms in the modal domain of an element is not alw
available. Here a systematic approach is introduced to explain
physical meaning of changes occurring in updated generic
ments when they are defined in the spatial domain. The appro
is to reduce the number of parameters to be identified by
application of constraints including matrix symmetry, invarian
of the element matrices to rotation~where applicable!, and the
application of the rigid-body modes to define the null-space
element stiffness matrices and the principal mass and inertia p
erties of element mass matrices. A further constraint, that the
ternal forces at the nodes should zero, is introduced for the
time in the definition of generic elements.

A finite element model defines the dynamic equilibrium con
tion of the physical structure in a discrete form. The upda
model also defines the same equilibrium conditions taking i
account mismodelled and neglected effects. The discrete upd
equations can be converted to continuous form. In this paper
conversion is achieved using Taylor series expansion of displ
ments at different finite element nodes in terms of the displa
ment of a reference node. Having determined the continuous g

ion
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erning equations from an updated model, one may realize
physical significance of added terms in the updating procedur
case study is performed to demonstrate the physical realizatio
an updated model.

2 The Generic-Element Model
The updating of a finite element model is performed with

limited amount of experimental data from the structure. Inevita
an analyst must make some assumptions about the nature of
modelled or neglected effects in order to improve the chance
tracing them successfully in updating. The basic assumption
every updating procedure is that the order and the structure o
finite element model is correct. In other words, the structure of
initial model is capable of accommodating all the physical effe
that are somehow represented in the measured data. We b
with this assumption and define generic parameters for each
ment of the initial finite element model. This approach is spec
because it permits neglected effects to be included so that
physical meaning of the model is improved when updated. Mo
fication of a finite element model at the element level impl
confidence in the connectivity of initial model. When this is
doubt a generic model of the group of elements that include
doubtful connectivity may be constructed. Reference@6# uses a
generic model for a branched joint represented by three b
elements in an initial model.

A generic element model is built by imposing all necess
conditions that the element must satisfy: the element mass m
M is positive definite, and its stiffness matrixK is semi-positive
definite. The rigid body modes of elementFR span the null space
of the stiffness matrix and are related to the mass matrix as,

KFR50, FR
TMFR5Fm 0

0 JG (1)

where in generalm is a diagonal 333 matrix with the total mass
of the element as its nonzero entries andJ is the 333 inertia
products matrix. A generic element model is developed by imp
ing the above necessary conditions on the element matrices.
meaning of generic-element parameters is now explained
means of bar and beam examples.

2.1 Bar Element. The generic element for a uniform ba
can be expressed in the form,

K5
k

L F 1 21

21 1 G , M5mLF 1
22b b

b 1
22b

G ,
k.0,

b,
1
4

(2)

wherek is the axial stiffness,m is mass per unit length, andL is
the length of the element. The form of the matrices is determi
only by Eqs.~1!, uniformity and symmetry. The conditionb,

1
4

arises from the positive definiteness requirement on the mass
trix. It can be seen thatb produces different possible mass mat
ces for the bar element:b50 produces a lumped mass matri
b5

1
6 corresponds to a consistent mass matrix with linear sh

functions,b5
1
8 creates a consistent mass matrix with harmo

shape functions andb5
1

12 produces a mass matrix with minimum
discritization error for a uniform bar.

The parameters of each element may vary independently du
updating. We may, however, introduce more constraints on
parameters by insisting that inter-element forces are in equ
rium. We develop the equation of motion using generic mod
and then apply the requirement of equilibrium on the int
element forces. The following example demonstrates
procedure.

Consider part of a structure modelled using bar elements.
select a row of the free vibration equation which consists of no
i 21, i, i 11 corresponding to bar elementsj and j 11 with equal
length ofL and different physical properties,
Journal of Vibration and Acoustics
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L
@2kj kj1kj 11 2kj 11#H ui 21

ui

ui 11

J
1LFmjb ~mj1mj 11!S 1

2
2b D mj 11bG H üi 21

üi

üi 11

J 50.

(3)

The displacements at nodesi 21, andi 11 can be defined in terms
of ui and its derivatives using the Taylor series expansion,

ui 215ui1(
n51

`
~21!n

n!

]nui

]xn Ln, ui 115ui1(
n51

`
1

n!

]nui

]xn Ln.

(4)

By substituting these values into Eq.~3!, we obtain a series of
continuous differential equations,

2(
n51

`
kj 111~21!nkj

n!

]nui

]xn Ln1
L2

2
~mj1mj 11!üi

1b (
n51

`
mj 111~21!nmj

n!

]nüi

]xn Ln1250. (5)

The expression obtained for the equation of motion contains
ferent orders ofL. The element length is an independent parame
therefore the right hand side of the equation of motion is zero o
if each order is equal to zero independently. The first order ter

L1⇒2~kj 112kj !
]ui

]x
(6)

define the sum of internal forces at nodei and must be zero even
when the adjacent element have different properties. It see
however, that this cannot be achieved without setting]ui /]x
50. The difficulty can be removed by assuming a linear relatio
ship between the element parameters and the physical prope
of the rod at the element nodes,

kj 115c1ki1c2ki 11 , kj5c1ki 211c2ki ,

mj 115c3mi1c4mi 11 , mj5c3mi 211c4mi (7)

whereki andmi are axial stiffness and mass per unit length of t
rod at nodei. We substitute Eq.~7! into ~5! and expandki 61
5ki6L]ki /]x, mi 615mi6L]mi /]x. The result sorted in orders
of L is,

L1⇒~~c11c2!2~c11c2!!ki

]ui

]x
50,

L2⇒2~c11c2!
]

]x S ki

]ui

]x D1~c31c4!miüi50, (8)

L3⇒ 1

2
~c12c2!

]

]x S ]ki

]x

]ui

]x D2
1

2
~c32c4!

]mi

]x
üi50.

The first of Eqs.~8! is satisfied automatically. If we consider th
uniform bar for whichcl51/2, l 51, . . . ,4,then we see that the
second and third-order terms go to zero and the fourth order te
appear as,

L4⇒2
1

12
ki

]4ui

]x4 2
1

6

]ki

]x

]3ui

]x3 2
1

4

]2ki

]x2

]2ui

]x2 2
1

6

]3ki

]x3

]ui

]x

1bS mi

]2üi

]x2 1
]mi

]x

]üi

]x
1

]2mi

]x2 üi DÞ0. (9)
OCTOBER 2002, Vol. 124 Õ 629



r

i

a

g

r

f

-

o

e
of a
trix

am-
a
ible

ent
rate
ed

in
s
-

ent
Inspection of Eq.~9! showed that fourth order terms in the equ
tion of motion of a bar element cannot be set to zero unlesski , mi

are constant andb5
1

12. In that case the fourth order terms lead
the expression,

]2

]x2 S 2ki

]2ui

]x2 1miüi D50, (10)

from which we recognize the differential equation governing ax
deflection in a uniform rod.

The equilibrium constraint on internal forces at each node
fines relationships for the generic parameters that may be use
updating. In the case of the beam element the number of pa
eters is reduced when these constraints are applied.

2.2 Beam Element. A generic beam element with nodesi
andi 11, and degrees of freedom@wi ,Lu i ,wi 11 ,Lu i 11#T has the
following general form for the stiffness matrix,

K5F kww kwu 2kww kww2kwu

kwu kuu 2kwu kwu2kuu

2kww 2kwu kww 2kww1kwu

kww2kwu kwu2kuu 2kww1kwu kww1kuu22kwu

G ,

kww.0, kuu.0, kwwkuu.kwu
2 . (11)

The above generic stiffness model can accommodate any e
that is defined using the specified degrees of freedom. Restric
the model to Euler-Bernoulli beam theory and applying equil
rium constraints on the internal moments and shear forces one
reduce the number of generic parameters by relatingkww , kwu and
kuu of each element to the nodal bending stiffnesski and its first
derivative ]ki /]x. The result of satisfying the requirement th
internal forces are in equilibrium, to the fourth order, is the go
erning equation of,

]2

]x2 S ki

]2wi

]x2 D1miẅi50 (12)

and minimizing the error up to the sixth order terms restricts
element with nodesi andi 11 to have parameters of the followin
form,

kww56ki16ki 111
3

5

]ki

]x
L2

3

5

]ki 11

]x
L,

kwu5
21

5
ki1

9

5
ki 111

2

5

]ki

]x
L2

1

5

]ki 11

]x
L, (13)

kuu5
16

5
ki1

4

5
ki 111

1

3

]ki

]x
L2

2

15

]ki 11

]x
L.

It is clear from the above that we may relate the 3 gene
element stiffness parameters to 2 parameters at the nodes, na
ki and ]ki /]x, and hence reduce the number of parameters.
example if a beam is modeled withN elements, the number o
parameters can be reduced from 33N to 23N12. The obtained
generic stiffness matrix gives the most accurate form to define
Euler-Bernoulli beam with variable cross section.

2.3 Geometric Symmetry. Further restrictions can be im
posed on an element if it has symmetry axes. In that case
invariance of the matrix entries to rotation of the element ab
one or more of the axes of symmetry is used to further reduce
number of unknown parameters. The constraint can be expre
in the form,

K5RTKR , M5RTMR (14)
630 Õ Vol. 124, OCTOBER 2002
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where the matrixR is a transformation matrix which relates th
element coordinates before and after rotation. In the case
symmetric beam element with nodes 1 and 2, the rotation ma
is developed from the identity,

H w1

Lu1

w2

Lu2

J 5RH w2

2Lu2

w1

2Lu1

J , R5F 0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

G (15)

which implies,

K5
1

L3 F kww kww/2 2kww kww/2

kuu 2kww/2 kww/22kuu

kww 2kww/2

Sym. kuu

G ,

kuu.kww/4.0, (16)

M5rALF m11 m12
1
2 2m11 m14

m22 2m14 m24

m11 2m12

Sym. m22

G ,

m245
1

6
2

m11

2
1m121m142m22, (17)

where the stiffness matrix has two independent parameterskww ,
kuu and the mass matrix is formed using four independent par
eters,m11, m12, m14, m22. The generic model constructed for
symmetric beam element is capable of representing all poss
effects in a symmetric element: the choice ofkww512EI, kuu
54EI and m11513/35, m12511/210,m14513/420,m2251/105
creates a uniform Euler-Bernoulli beam model with a consist
mass matrix obtained from cubic shape functions. A more accu
model for dynamic analysis of the Euler-Bernoulli beam is form
if we set m115163/420, m12551/840, m145219/840, m22
515/840. It may be shown that the latter mass matrix results
discretization errors of the 6th order while the consistent mas
matrix has 4th order errors@7#. A Timoshenko beam element in
cluding shear effects is obtained by selecting,

kww5EI
12

11g
kuu5EI

41g

11g

m115S 13

35
1

7

10
g1

1

3
g2D Y ~11g!2

m125S 11

210
1

11

120
g1

1

24
g2D Y ~11g!2

m1452S 13

420
1

3

40
g1

1

24
g2D Y ~11g!2

m225S 1

105
1

1

60
g1

1

120
g2D Y ~11g!2

g5
CEI

GAL2 (18)

whereC is the cross section shape factor. Also a beam elem
with a crack at half its length may be formed by assigning,
Transactions of the ASME
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kww5
12EI

11~12n2!a3F2
,

kuu5
EI@41~12n2!~18aF112a3F2!#

@116~12n2!aF1#@112~12n2!a3F2#
(19)

wherea5h/L is the ratio between the thickness and the length
the element and the functions,

F15E
0

a/h 2 tanS ps

2 D S 0.199S 12sinS ps

2 D D10.923D 2

cos2S ps

2 D ds

(20)

and,

F25E
0

a/h ps2

12s
~322s!2~1.12220.561s10.085s210.18s3!2ds

(21)

are products of stress intensity factors for opening type and slid
type cracks respectively@8#, anda is the crack depth. We conside
the case where the element thickness is small compared t
length and take into account only the first order terms ina. Then
the formulation of a cracked beam is simplified to,

kww512EI, kuu5EI~426~12n2!aF1!. (22)

This means that in the resulting finite element formulation of
cracked beam the crack is modelled as a lumped bending sp
with a negative constant.

We have shown that by a generic element approach a sma
of parameters may be found for updating by satisfying a variety
constraints including null-space requirements, equilibrium of
ternal forces and moments, and element symmetry. In the cas
plate, shell, solid or other elements satisfying the equilibrium
internal forces at nodes the number of parameters may agai
reduced significantly@9#. The next section deals with the cha
lenge of determining the physical meaning of an updated mo
using the parameterization described above.

3 Physical Realization of Parameters
Processing updated models is the most important step in un

standing the dynamical behavior of a structure. By realization
the modified terms one finds those characteristics of the test s
ture that were not included in the initial model. However the ta
of realization of the physical meaning of each modified term is
straightforward and is mainly based on the engineering judgm
of the analyst. For example, we would like to find out if a chan
is due to the shear effect, stress stiffening, or a local crack, et
is shown in the previous section that all these effects can be
counted for by changes in a similar set of parameters. It is d
onstrated how physical phenomena attributed to the discrepan
between experimental data and the prediction of an initial mo
can be extracted from modified terms in an updated model.

In modelling a continuous structure using the finite elem
method a discrete model of a bar, beam, shell, or solid is assig
to each element. When the generic model of each element exh
its true nature then the updated model represents a discrete ve
of the equation of motion of the physical structure. At each e
ment the discrete equation can be converted to a continuous
as demonstrated in Eqs.~3!–~5! and compared with existing con
tinuous models to find the effect it represents. The method
demonstrated using the following updating exercise.

The experimentally measured modes of a simply supported
form steel beam with the length 575 mm and of rectangular cr
section 31.75 mm depth and 9.525 mm breadth with a symme
crack at mid-span are reported by Christides and Bar@10# and
Shen and Pierre@11#. Christides and Bar presented a on
dimensional theory of the cracked Euler-Bernoulli beam and v
Journal of Vibration and Acoustics
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fied their predictions by the experimentally measured first natu
frequency of the beam with different crack sizes. Shen and Pi
presented a solution to obtain the mode shapes and natura
quencies of the cracked beam based on the Christides and
theory. They verified their method using the experimentally m
sured natural frequencies and predictions of finite element mo
of the cracked beam developed using rectangular and triang
plate elements. We use the first experimentally measured na
frequency and corresponding mode shape to update the initia
nite element model which is formed using uniform Eule
Bernoulli beam elements with no crack effect introduced. T
case where the first mode is reduced to 0.76% of its initial va
after introducing the crack is used in updating. The aim is
update the model and find a physical justification, i.e. location a
the size of the crack, for the updated terms.

Parameterizing a crack by using a lumped rotational spring
established in the literature. It was shown earlier that one form
lation of a cracked beam element effectively models a crack a
lumped rotational spring with a negative stiffness ofku

526EI(12n2)aF1 . However such a lumped model produc
accurate results only for one mode and cannot predict the beha
of the structure over a wide frequency range. Moreover the z
affected by a crack in a lumped model has zero length while
reality the stiffness of the beam is affected over a finite reg
local to the crack. Our purpose is to develop an updated mode
limited by the restrictions of the negative lumped spring, a
therefore we start with the generic form of the beam elem
stiffness developed in Eq.~11!. There are 3 parameters in eac
element to be updated, namelykww , kwu , andkuu . We may up-
date the beam model using these three parameters in each
ment. However by using only the first mode of a thin beam
updating we may neglect the shear effects and assume tha
Euler-Bernoulli model defines the characteristics of the struct
adequately. This reduces the number of parameters to two
node by insisting on the equilibrium of inter-element forces o
beam described in the previous section, i.e., we selectki and
]ki /]x as updating parameters. An equation error function
formed using the first mode. The equations are weighted base
the strain energy of the related areas to avoid large change
parameters that do not contribute to the strain energy of the
mode. The updating was performed with different numbers
elements to ensure the stability of the results. The updating
sults, i.e., the percentage change in parameterski and]ki /]x are
shown in Figs. 1 and 2. As expected, a sharp reduction in stiffn
at the center of the beam is predicted.

We might attempt to further reduce the number of updat
parameters, and for the purpose of illustration the updating

Fig. 1 Changes in lateral stiffness
OCTOBER 2002, Vol. 124 Õ 631
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carried out again using two different sets of parameters. In the
it is assumedki varies linearly along the element, i.e.,]ki 11 /]x
5]ki /]x and higher derivatives ofki are zero. Therefore the el
ement parameters can be defined usingki andki 11 as,

kww56ki16ki 11 ,

kwu5
21

5
ki1

9

5 S ki1
]ki

]x
L D1

1

5

]ki

]x
L54ki12ki 11 , (23)

kuu5
16

5
ki1

4

5 S ki1
]ki

]x
L D1

1

5

]ki

]x
L53ki1ki 11 .

The results of updating assuming a linear variation of beam p
erties are shown in Fig. 3. In the second caseki is assumed con-
stant within the element i.e.kww512ki , kwu56ki , kuu54ki , and
the results are shown in Fig. 4. The results of modifyingki from
both latter methods are similar to each other but are different f
the results when bothki and]ki /]x are updated. The observation
were verified using different numbers of elements. This can
simply explained by the fact that the selection of]ki /]x as a
constant or zero along the element results in a zero order est
tion of the parameters. In these cases the sum of the inte
forces at each node is not zero and the estimate contains erro

Fig. 2 First derivative of the lateral stiffness

Fig. 3 Linearly varying element properties
632 Õ Vol. 124, OCTOBER 2002
rst

op-

om
s
be

ima-
rnal
rs of

the first order inL. The two cases considered demonstrate
need for both of the parameterski and]ki /]x when updating the
cracked beam.

We have obtained reliable results from updatingki and]ki /]x
and the remaining task is to find the associated physical mea
of the updated terms. To find the physical meaning we form
governing equation of the beam at each node using the upd
model. The governing equation for a generic beam model w
variableski , ]ki /]x is represented in Eq.~12!. The obtained gov-
erning equation suggests a beam with variable bending flexibi
Christides and Barr@10# developed a one-dimensional theo
of the cracked Euler-Bernoulli beam by defining the govern
equation,

]2

]x2 S EIQ~x!
]2w

]x2 D1rAẅ50 (24)

whereQ(x) is the crack disturbance function defined as,

Q~x!5F11S S h

h2aD 3

21DEXPS 22gUx2xc

h U D G21

(25)

where as beforeh is the beam thickness,a is size of the crack and
xc is location of the crack. Christides and Barr used the constag
to specify the area affected by the crack and evaluated it fr
experimental observation. Later Shen and Pierre@11# showed that
for symmetric cracksg is independent of the location or size of
symmetric crack and is equal to 1.936.

Realization of updated parameters is performed by compa
the governing equation of the updated model at each node
the proposed governing equation of Christides and Barr. T
change inki at each node is equal to the value of 12Q(x) evalu-
ated at that node. We evaluated the crack size by comparingQi

511Dk/k0 at each node withQ(x) and founda/h' 2
3 which is

consistent with the test report@10#. Figure 5 shows the identified
Qi at each node and the values ofQ(x) for a/h5

2
3. Constructing

the governing equation of the beam from the updated model
abled us to find a physical explanation for the change in e
parameter.

4 Conclusions
Generic element models for updating are developed by c

straining the model to have the appropriate null space, positi
properties, total mass and moments of inertia and geometric s
metry ~if appropriate!. The parameters are also constrained
meet the requirements of internal-force equilibrium at each no
The generic-element models obtained by this approach can

Fig. 4 Constant element properties
Transactions of the ASME
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used in model updating. The physical meaning of the upda
terms are not always readily available but may be explained
the governing differential equation produced at each node a
updating. The governing equation produced by the method ca
compared to existing governing equations in the literature to
tablish the physical meaning for the updated terms. The proce
of parameterization and physical realization is demonstrated
updating a model using experimental data obtained from
cracked beam.

Fig. 5 Disturbance function—exact „solid …, identified „circled …
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