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ABSTRACT: 

In this paper, a finite element (FE) model of a railway freight vehicle is proposed to be used in the identification of 

applied forces to the wheelsets. The proposed model is comprised of two, two-axle bogies of type H665 and a freight 

wagon. The model is updated in two stages. First, the bogie is updated by using modal data extracted from 

measurements on an actual bogie separated from wagon. Secondly, the whole structure of the vehicle is updated by 

modal data obtained from a test conducted on the vehicle in the laboratory. Since the proposed model is relatively 

large, it is reduced to some desirable points through the superelement analysis method, in order to reduce the cost of 

computation. The final reduced model is then used to identify the applied forces resulted from irregularities of track. 
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1. Introduction 

Nowadays, a great proportion of the railways industry 
budget is allocated to maintenance, keeping facilities 

such as track and rolling stock in good condition. The 

importance of this issue is highlighted when phenomena 

such as derailment that results from poor track condition 

causes many people to be wounded or die annually all 

around the world. Many companies use track inspection 

vehicle to ensure railroad safety. These vehicles are 

equipped with special mechanisms and sensors to 

measure the track geometry directly. However, these 

systems impose high expenses on companies because of 

both their high costs of purchase and maintenance. 
Therefore, alternatives of these traditional ways are now 

of great concern. Bleakley [1] used signal data obtained 

during the normal operation of vehicle on a track to 

define unsafe territories of track by comparing these data 

with the available standards. This method is generally 

used for determination of hazardous areas and no 

information is obtained about the applied forces.  

Xia et al. [2] have provided an inverse wagon model 

to estimate wheel–rail contact forces using only 

measurements of wagon body responses as inputs. In 

their work, both wagon body and bogies are modelled 
with rigid beams and the partial modal matrix (PMM) 

method is used to predict the input loads. Kawasaki and 

Youcef-Toumi [3] have provided a method to estimate 

the rail irregularities by measuring accelerations of a 

passenger car using an auto regressive model with extra 

inputs (ARX). They used data from a track with known 

irregularities and the accelerations of the car recorded 

during movement on that track to identify the parameters 

of their model. Uhl [4] used a dynamic programming 

optimization method to minimize the objective function, 

which is the least square error between the simulated and 

measured system responses, in order to identify the 

excitation forces applied to the wheels of a rail vehicle. 
Since direct measurement of applied forces on many 

structures either requires expensive instrumentation or 

inapplicable because of inaccessibility of applied 

locations, force identification methods are of great 

concern in the literature. Some of these methods are 

based on time domain approaches. Force determination 

in time domain uses an expansion method to estimate 

unmeasured responses of structure from the measured 

ones. By having all the responses, it is possible to solve 

the governing equation of system backward to 

reconstruct the applied forces. Genaro [5] used this 

method for identification of applied forces to a case 
study system of 11 degrees of freedom (DOF).  

Some other methods in frequency domain are 

generally based on the pre-multiplication of frequency 

spectrum of measured responses of the system by inverse 

Frequency Response Function (FRF) matrix [6]. Leclere 

et al. [7] used this method to determine the power 

spectrum of bearing loads of a diesel engine from the 

power spectral density of measured responses. Okubo [8] 

also used this method for determination of excitation 

forces of an automobile engine. This method is also used 

by Uhl [9] for the identification of in-flight loading 
forces from measured responses. 

In this work, an updated Finite Element (FE) model 

of railway vehicle to be used in force identification 
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procedure is proposed. The model is then reduced 

through a dynamic reduction procedure to decrease the 

computation costs. Responses of vehicle in some specific 

points on the car body are recorded and then transformed 

in frequency domain. Regarding the methods in 

frequency domain, the applied forces to wheelsets are 

reconstructed by pre-multiplication of frequency 

spectrum of measured responses by inverse FRF matrix 

of the system. 

2. Finite Element Modelling 

The bogie used in this work is a two-axel bogie of type 

H665. This type of bogie is frequently used in freight 

vehicles. The majority parts of the bogie are comprised 

of plates of different thicknesses which are welded to 

each other to form the main structure. To validate the 

accuracy of proposed FE model, it is improved by 

natural frequencies obtained from measurements on an 

actual bogie using FE model updating procedure. The 

final results obtained from the improved analytical 

model conform to the measured ones [10].  

The skeleton of the car body consists 8 cross 
sectional beams that are used to stiffen the structure. 

Between these beams, walls are located which are made 

from steel panels of 6 mm thick. All of the stiffener 

beams are modelled by beam elements with constant 

cross sections and the walls are modelled by shell 

elements with properties of the steel. Between the first 

and second cross sectional spans there is no wall, but 

doors of the car body are located. These doors are 

modelled as lumped masses with equivalent moment of 

inertia with their masses distributed on the hinges. 

Connection of each bogie to the body is provided by 3 

springs. Two linear springs are used to model the 
suspensions in vertical and lateral directions which resist 

against the pitch and yaw modes respectively. One 

rotational spring is used to model the suspension about 

longitudinal axis which resists against the roll mode of 

body. The stiffness values of these springs are obtained 

through the FE model updating procedure of the entire 

structure. 

In order to extract the modal properties of vehicle, 

the car body is excited by a lever that is located between 

one of the bogies and car body. The car body is excited 

with a hammer that directly targeted its body. In both of 
these tests, 15 uni-axial accelerometers are used to 

record the accelerations of the structure on its walls and 

floor [11]. Accelerometers are arranged in an order that 

detection of rigid body modes is possible as well as 

detection of elastic modes of the car body in lateral and 

vertical directions. Fig. 1 shows the locations and 

directions of accelerometers. 
 

 

Fig. 1: Location of uni-axial accelerometers 

Frequency Domain Decomposition (FDD) method is 

used for identification of the natural frequencies and 

mode shapes of the structure. Linearized sensitivity 

method is used for the FE model updating procedure. 

The basis of this method is the assumption that the 

difference between the measured and predicted modal 

properties (natural frequencies), can be described in 

terms of relevant modal sensitivities (rates of change of 

natural frequencies (
ii pδδλ / ) with respect to changes in 

individual variable terms
i

p ) and small adjustments to 

the selected design variables in the model (
i

p∆ ) [12]. 

This can be expressed as: 
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where M and K are respectively the mass and stiffness 

matrices and 
nφ  is the eigenvector of the system. 

FE model updating procedure is stopped after 5 

iterations. After this, the stiffness values of the springs 

between bogies and body are obtained as 

mNEyk /10.1_ =  and mNEzk /544.6_ =  respectively for 

the linear spring in vertical and lateral directions, and 

NmExkr 617.2_ =  for one rotational spring about 

longitudinal axis respectively.  Table 1 gives the natural 

frequencies of the structure before and after FE model 

updating procedure along with the measured ones. The 

comparison of measure frequencies with the predicted 

ones from FE model shows a good agreement. The 

predicted (FE model updated) mode shapes of whole 

vehicle car body at these frequencies are shown in Figs. 

2-6 respectively. Also, the first 5 mode shapes (un-
deformed structure in gray mesh) at the middle section 

of the bogie is shown respectively in Figs. 7 to 11. 

Table 1: Natural frequencies of structure  

Mode  
Before 

updating (Hz) 
After 

updating (Hz) 
Measured 

(Hz) 

Roll  1.69 2.48 2.66 

1st Elastic 4.09 4.23 4.66 

Pitch  4.87 8.04 8.33 

2nd Elastic 13.58 14.23 14.00 

3rd Elastic 24.70 24.87 24.66 

3. Superelement Analysis 

In FE analysis, the demand for computer resources will 

always exceed existing capabilities. By using 
superelements, one can not only analyze large models, 

but also can become more efficient in performing the 

analysis, thereby allowing more design cycles or 

iterations in the analysis. The principle used in 

superelement analysis is substructuring where the model 

is divided into a series of components (superelements), 

each of which is processed independently, resulting in a 

set of reduced matrices that describe the behaviour of the 

superelement as seen by the rest of the structure.  
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Fig. 2: Roll mode shape from FE model 

 

Fig. 3: First elastic mode shape from FE model – Whole vehicle 

 

Fig. 4: Pitch mode shape from FE model – Whole vehicle 

 

Fig. 5: Second elastic mode shape from FE model – Whole vehicle 

 

Fig. 6: Third elastic mode shape from FE model – Whole vehicle 

 

Fig. 7: Roll mode shape from FE model – Car body section 

 

Fig. 8: First elastic mode shape from FE model – Car body section 

 

Fig. 9: Pitch mode shape from FE model – Car body section 

 

Fig. 10: 2
nd

 Elastic mode shape from FE model – Car body section 

 

Fig. 11: 3
rd

 Elastic mode shape from FE model – Car body section 
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The reduced matrices for the individual 

superelements are combined to form an assembly (or 

residual) solution. The results of the assembly solution 

are then used to perform data recovery (calculation of 

displacements, stresses, etc.) for the superelements [13]. 

In dynamic reduction the assumption is that the solution 

for each superelement can be represented by using 

superposition of a series of shape functions: 

   
qoqtoto UGUGU .. +=                                )3(  

where 
oU is the motion of the interior points of the 

current superelement. 
otG and 

oqG are the static and 

dynamic transformation matrices. 
tU and 

qU are the 

solutions for the motion of the physical and generalized 

exterior DOFs respectively. Interior points are the ones 

which are not desirable and are omitted after the 

reduction. On the other hand, exterior points are the ones 

on which the reduced matrices are based and the entire 

structure is reduced to these points. In the case of fixed-

boundary dynamic reduction (better known as Craig-

Bampton Component Mode Synthesis), 
otG is the static 

motion of the superelement resulting from moving one 

boundary (exterior) DOF by 1.0 unit while holding the 

other boundary DOFs fixed and 
oqG is the eigenvector of 

the system obtained from the original system after its 

boundary nodes are fixed. 

In this work, the entire structure is reduced to 15 

points on the body where accelerometers are attached 

and 4 points on each bogie where the suspension springs 

are attached to the wheelsets. The reduced model is then 

used in force identification procedure instead of the 
entire FE model to reduce the cost of computation. The 

response of structure is detected by those 15 points on 

the accelerometer positions. The forces from wheelsets, 

which we are interested in defining, are applied at those 

8 points on the bogies. Since the wheelsets are connected 

to bogies through suspension springs, having the 

knowledge of applied forces to the points where springs 

attach to bogie, can lead us to the applied forces on the 

wheelsets that are directly proportional to track 

irregularities. 

A comparison between the natural frequencies of 

structure obtained from normal mode analysis of the 
complete model and those obtained from the reduced 

model is given in Table 2. Moreover, the mode shapes 

corresponding to these 6 modes are in good agreement 

with each other, i.e., the norm of difference between 

mode shape of the complete model and the reduced 

model in each mode is close to zero. This shows that 

reduced model can be reliably used instead of full model. 

Table 2: Natural frequencies of structure 

Mode No. 
Complete model 

(Hz) 
Reduced model 

(Hz) 

1 2.010549 2.010541 
2 2.479246 2.479240 
3 4.229781 4.229772 
4 4.585932 4.585439 
5 8.039200 8.039191 
6 10.20173 10.20162 

4. Force Identification 

For a multi-degree of freedom system with N degrees of 

freedom, the governing equations of motions can be 

written as [12]:  

   [ ]{ } [ ]{ } [ ]{ } { }fxKxCxM =++ &&&    (4) 

where [ ]M , [ ]C  and [ ]K  are the mass, damping and 

stiffness matrices respectively. { }f  and { }x  are time-

dependent vectors of force and displacement. If the 
structure is excited by a set of forces at the same 

frequency of ω but with individual amplitudes and 

phases, { } { } ti
eFtf

ω=)( , then the solution of problem will 

be in the form of{ } { } ti
eXtx

ω=)( . Therefore, the equation 

of motion will change to the form of: 

   [ ] [ ] [ ]( ){ } { }FXCiMK =+− ωω 2    (5) 

Rearranging Eqn. 5 results in:  

   { } [ ] [ ] [ ]( ) { }FCiMKX
12 −

+−= ωω    (6) 

This may be written as: 

   { } [ ]{ }FHX )(ω=      (7) 

where [ ])(ωH  is NN ×  receptance FRF of the system and 

can be obtained from Eqns. 6 and 7 using: 

   [ ] [ ] [ ]( ) [ ] 12 )(
−=+− ωωω HCiMK    (8) 

Eqn. 8 is premultiplied by [ ]TΦ  on both sides and also 

postmultiplied [ ]Φ on both sides and lead to: 

   [ ] [ ] [ ] [ ]Trrr iH Φ+−Φ=
−122

2)( ωωξωωω   (9) 

Eqn. 9 permits us to compute any individual FRF 

parameter, )(ωjkH , using the following formula: 

   ∑
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According to Eqn. 7, the multiplication of the FRF 

matrix with the vector of excitation forces yields the 

response of these forces on a structure. It should be 

noted that the FRF matrix, the force, and the response 

vectors are all functions of frequency ω. By multiplying 

both sides of Eqn. 7 by ([H(ω)]-1), the foundation of the 

so-called FDD force estimation method will be formed. 

The new equation leads into the determination of 

excitation forces by using the FRF matrix and vibration 

response levels as:  

   { } [ ] { })()()(
1 ωωω XHF

−
=                 (11) 

The most challenging part of this procedure is the 

construction of the FRF matrix and taking its inverse 

with an acceptable accuracy. Since FRF matrix 

represents the dynamic properties of a structure, it is 
crucial to get FRFs measured or calculated with high 

accuracy. It is noteworthy to say that the number of 

responses are about to be measured (m) and the number 

of forces are about to be determined (n) are two critical 

parameters during the solution of this inverse problem. 

To avoid ill-conditioning of FRF matrix, it is 

recommended that the number of measured response 

shall be greater than the number of applied forces, i.e., 

m>n. In this work we have 8 points where suspension 
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springs attach to the wheelsets and forces are applied to 

the structure and 15 points on the vehicle body where the 

responses are detected. Since the FRF matrix is not 

square in this case, we use a pseudo-inverse of FRF 

matrix instead of its inverse, leading Eqn. 11 to: 

   { } [ ] { })()()( ωωω XHF
+

=                              (12) 

5. Results and Discussions 

In order to investigate the accuracy of the proposed 

method, a vertical force with frequency content of 10, 5, 

and 2 Hz is applied to the structure using: 

   )4cos(800)10cos(200)20cos(500 tttF πππ ++=             (13) 

and the recorded responses of the body at the points 

shown in Fig. 1 are used in the reconstruction of applied 

forces. A sample response of one of the points in the 

time and frequency domain is shown in Fig. 12 and 13 

respectively. Using the responses of other points, the 

constructed force is obtained in frequency domain. 

Reconstructed force in comparison with applied force is 

shown in Fig. 14. 
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Fig. 12: Same response in time domain  
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Fig. 13: Sample response in frequency domain 
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Fig. 14: Comparison of reconstructed and actual force 

 

As a second case, two forces - a vertical force (
yF ) 

with frequency content of 2 and 4 Hz and a lateral force 

(
zF ) with frequency content of 10 Hz are applied 

simultaneously to the structure on different points using:  

   )8cos(200)4cos(500 ttFy ππ +=                (14) 

   )20cos(300 tFz π=                 (15) 

By applying the same procedure, it is possible to 

reconstruct these forces from measured responses. Fig. 

15 shows the comparison between vertical applied force 

and reconstruction of this force. 
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Fig. 15: Comparison of reconstructed and actual force 

6. Conclusions 

In this paper FE model of railway freight vehicle is 

proposed and updated by its modal properties extracted 
from the measurements on an actual vehicle. The 

updated model is then used in the force identification 

procedure. Instead of using a complete FE model, a 

reduced model, which is obtained after exerting a 

dynamic reduction procedure suing superelements on the 

complete model, is used in the force determination 

procedure. This force identification procedure is 

conducted in frequency domain which is based on the 

premultiplication of recorded responses of structure in 

frequency domain by the inverse FRF matrix of reduced 

model. This procedure gives a reliable estimation of the 
applied forces to structure.  

It is shown that the forces with low frequency 

contents can be estimated reliably by the proposed 

methods. These low-frequency-content forces, which are 

caused by track deterioration from its normal geometric 

conditions, when the forces exceed the normal values, 

are generally the cause of derailment. Since the 

frequency contents of the responses are used in this 

procedure, it is recommended that these responses shall 

be recorded at high resolution to generate consistent 

frequency content plots. The proposed FE model 

updating and identification procedure can be used in 
actual applications. Responses of a real vehicle in its 

normal operation can be detected and feedback to the 

model to give an estimation of actual applied forces on 

the vehicle during the normal operation. By monitoring 

these forces, it is viable to spot lengths of track where 

applied forces exceed the normal values defined for safe 

operation of vehicle. 
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