
Finite Elements in Analysis and Design 47 (2011) 796–803
Contents lists available at ScienceDirect
Finite Elements in Analysis and Design
0168-87

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/finel
Development of super-convergent plane stress element formulation
using an inverse approach
H. Ahmadian a,n, S. Farughi b

a Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
b School of Mechanical Engineering, Urmia University of Technology, Band Street, Urmia, Iran
a r t i c l e i n f o

Article history:

Received 30 October 2009

Received in revised form

2 February 2011

Accepted 25 February 2011
Available online 21 March 2011

Keywords:

Plane stress element

Inverse method

Discretization error
4X/$ - see front matter & 2011 Elsevier B.V.

016/j.finel.2011.02.010

esponding author. Tel.: þ98 21 77240198; fa

ail address: ahmadian@iust.ac.ir (H. Ahmadia
a b s t r a c t

New formulation for the plane stress element with super-convergent properties is presented using an

inverse method. The element formulation is developed in parametric form satisfying geometrical

symmetries of the element and producing rigid body and constant strain modes requirements. The

remaining higher order modes of the element are assigned by minimizing the difference between the

resultant parametric finite element discrete formulation and the corresponding continuous governing

equations, i.e. the discretization errors. Classically minimization of discretization errors is performed by

starting from the lowest order error terms and setting them equal to zero. In this paper, it is shown the

effect of these errors may also be minimized by allowing the residual errors in adjacent nodes to be

equal in magnitudes but with opposite signs. This causes zero bias error in the associated eigen-

problem and leads to an element model with super convergent eigen-solution properties. The proposed

method of minimizing the errors is applied to the plane stress element formulation and it is proven a

more accurate model is achieved over the classical method of error minimization. The new element

formulation result super-convergent eigen-solution and in a numerical example these convergence

properties are compared to the reported models in the literature.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In-plane stress elements considered in this paper are a class of
elements with translational degrees of freedom at nodes repre-
senting in-plane displacements. In the earlier studies, plane stress
elements were developed using linear displacement assumption
(LDS). The rectangular element model developed by Argyris and
Kelsey [2] using bilinear shape functions belong to this group of
elements. Later, linear stress assumption approach (LSA) was
introduced by Przemieniecki and Berke [3] who employed this
concept in driving a new element formulation. However, these
formulations result stiff elements for problems in which the
response is dominated by linear strain gradients. In these models,
over-stiffness increases rapidly as aspect ratio of the element
increases [4].

There are various proposals to improve the bending behavior of
the standard bilinear rectangle elements among them are classic
Pain’s hybrid formulation [5] and nonconforming formulations of
Wilson et al. [6] and Taylor et al. [7]. However, the formulations
presented in [3,5,6] lead to the same stiffness matrix for the nodal
displacements when the mesh is rectangular and aligned with the
global Cartesian co-ordinates [8,9]. More recently, Felippa [10]
All rights reserved.
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showed the best model for rectangular plane stress is assumed
linear stress formulation. This is also reported by Yunhua and
Eriksson [11] for rectangular in-plane element.

In the current paper, an inverse approach is employed to
obtain the optimum element formulation which leads to results
with super-convergent properties. The advantage of employing
the inverse method is providing the best possible formulation for
the element under consideration. Whereas using classical finite
element method, the obtained results are dependent to the
selection of the element shape functions and the best element
formulation may not always be achieved. Inverse approach in
finite element formulation was used by Argyris et al. [12], Bergan
and Nygard [13], and Simo and Rifai [14] to enforce constraints, in
the form of assumed strain modes, on the stiffness formulation to
guarantee that the element model would pass the patch test.
Stavrinidis et al. [15] introduced discretization error of rod and
beam elements by power series ofDx, where Dx is the element
characteristic of length. Discretization errors are those associated
with replacing the continuous media by one composed of finite
elements. If the elements characteristic of length approaches to
zero, the discretization errors vanishes. Stavrinidis et al. [15]
obtained new formulations for beam and rod element by mini-
mizing the discretization errors. Later, Ahmadian et al. [16] devel-
oped mass and stiffness matrices of a rectangular plate element
by minimizing the finite element model discretization errors.

www.elsevier.com/locate/finel
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The objective in this paper is to set up admissible parametric
stiffness and mass matrices for rectangular plane stress element.
A parametric model for the element is developed and the
unknown parameters are defined by using a different approach
in minimizing the discretization errors. The present paper pro-
poses two significant improvements to the inverse finite element
model development. The first improvement is achieved by
employing the constant strain modes to introduce more con-
straint on the stiffness matrix parameters and reduce the number
of generic element unknowns. The second contribution of the
present paper is the strategy used in minimizing the discretiza-
tion errors. Previous proposals in inverse finite element model-
ing [15,16] start from the lowest order terms and set the
discretization errors to zero. However there are situations as will
be shown later in this paper where using the available parameters
the error terms cannot be set to zero. This paper distributes the
errors in these situations evenly over the entire domain with
opposite sings in neighboring nodes. This does not affect the
accuracy of the eigen-value and displacement predictions and
allows more accurate models to be identified. The obtained
stiffness and mass model produces highly accurate eigen-solution
and displacement having fast rate of convergence. These improve-
ments are assessed analytically and also through comparing the
convergence rates of the obtained optimal model with those of
existing models.

The paper is outlined as follows. In section two, the physical
requirements of an element model is discussed. These physical
requirements are then used to develop a parametric model for the
element. Section 3 demonstrates the procedure of parameteriza-
tion and identification of optimum parameters using a simple
four node membrane element. Section 4 uses the inverse strategy
introduced in Section 3 in order to establish a new formulation for
the rectangular plane stress element. Section 5 investigates the
convergence rates of the obtained stiffness and mass formulations
using numerical examples. Some concluding remarks are made
in Section 6.
Y
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Fig. 1. Four-node square membrane element.
2. Physical requirements of an element model

In general, an element model must meet certain requirements.
Consider an element with d degrees of freedom and R rigid-body
modes. The stiffness matrix K is symmetric positive semi-definite
and of rank d�r and the rigid-body modes of the element,
FR ¼ ½fR1,fR2,:::,fRr � form its null space:

KFR ¼ 0 ð1Þ

Also mass matrix M is symmetric positive-definite and of rank
d. If the rigid-body modes are defined on the principal co-
ordinates of the element then,

FT
RMFR ¼ diagðm,m,m,Ixx,Iyy,IzzÞ ð2Þ

where m is the element mass and Ixx, Iyy, and Izz are the moments
of inertia. Moreover, if some strain modes of the element such as
constant strain modes, FC ¼ ½fc1,fc2,:::,fcn�, are known then
further constraints can be imposed on the stiffness matrix:

Kfci ¼ lifci, i¼ 1,2,. . .,n ð3Þ

where li corresponds to the strain energy stored in the element
volume V at the ith strain mode. The strain energy in each mode is
defined using the known strain, ei, and stress, si, distributions
over the element domain as,

li ¼
1

2

Z
V
eisi dv ð4aÞ
The orthogonality relations for the set of rigid body modes and
constant strain modes are

FR FC
� �T

K FR FC
� �

¼
0 0

0 G

� �
, G¼ diagðl1,l2,. . .,lnÞ ð4bÞ

The element will pass its associated patch test if it has the
ability to model the rigid body motion and constant strain
mode [9]. Therefore when FC contains all the element constant
strains modes, the element formulation satisfies the patch test
requirements necessary for solution convergence. Further
requirements regarding the entries of stiffness and mass matrices
can be defined using geometrical symmetries of the element. If
the element has some symmetrical properties, then the mass and
stiffness models reflect these properties; rotation of the element
about its symmetry axes does not change the stiffness and mass
matrices. It is possible to define a family of stiffness and mass
matrices for an element that satisfies these requirements but
depend upon one or more parameters.

In the following section, a simple example is provided to
demonstrate the procedure of inverse model development. The
example involves generating stiffness model of a transverse
membrane element. A parametric stiffness model is developed
by imposing the physical requirements on the stiffness model.
Admissible parametric form of stiffness matrices has one unat-
tributed parameter that is assigned by minimizing the discretiza-
tion errors.
3. Four-nodes rectangular transverse membrane element

Membrane elements are a class of elements used for modeling
thin structures that are subjected to tension. They have only out-
of-plane degrees of freedom, possess negligible resistance to
bending moments, and restoring forces arise exclusively from
in-plane stretching or tensile forces [17]. These elements are used
widely in analysis of acoustic fields. The transverse membrane
element reported in the literature is developed based on linear
displacement assumption [1]. The resultant stiffness matrix pre-
sents a second order convergence rate for static deflection
problems.

A four-node rectangular membrane element with dimensions
of Dx and Dy, shown in Fig. 1, is considered. Each node has one
degree of freedom and the element stiffness matrix is a 4�4
symmetric positive semi-definite matrix of the following general
form:

K ¼ k

k11 k12 k13 k14

k22 k23 k24

k33 k34

sym k44

2
66664

3
77775 ð5Þ

where k is a positive real scalar. The element has two symmetry
axes; when the element is rotated through p radians about one of
these axes the stiffness matrix remains unchanged. The rotations
are equivalent to applying the transformations Txx and Tyy as

TT
xxKTxx ¼ K , TT

yyKTyy ¼ K , Txx ¼

0 �1 0 0

�1 0 0 0

0 0 0 �1

0 0 �1 0

2
6664

3
7775;



Fig. 2. Assembled square membrane elements.
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Tyy ¼

0 0 0 �1

0 0 �1 0

0 �1 0 0

�1 0 0 0

2
6664

3
7775

ð6Þ

Using the physical symmetry requirements, the number of
unknown parameters of stiffness matrix reduces to 4:

K ¼ k

k11 k12 k13 k14

k11 k14 k13

k11 k12

sym k11

2
66664

3
77775 ð7Þ

When the element is rotated through p/2 radians in its own
plane, the element aspect ratio q¼Dy/Dx, is reversed. This rota-
tion is equivalent to the transformation of,

Tzz ¼

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

2
6664

3
7775, TT

zzKðqÞTzz ¼ Kð1=qÞ ð8Þ

It leads directly from Eq. (8) that k14 is obtained by inverting
the aspect ratio q to 1/q ink12; this produces one more constraint
on the parameters of the element.

The element has one rigid-body mode,

Fr ¼ 1 1 1 1
� �T

ð9Þ

Introducing the above rigid body mode into Eq. (1), one more
parameter is defined as,

KFr ¼ 0) k13 ¼�ðk11þk12þk14Þ ð10Þ

This brings the total number of unattributed parameters of the
parametric stiffness matrix to three. The element has two con-
stant strain modes,

fC1 ¼ �
1
2

1
2

1
2 �

1
2

h iT
, fC2 ¼ �

1
2 �

1
2

1
2

1
2

h iT
ð11Þ

The constant strain modes fCi, i¼ 1,2 produce the following
stored strain energy in the entire element:

l1 ¼
P

q
, l2 ¼ Pq ð12Þ

where P is the surface tension of the element. Employing the
relation defined in Eq. (3) one finds the following relations:

k12 ¼
Pq

2k�k11, k14 ¼
P

2qk�k11 ð13Þ

Now the unknown parameters of stiffness matrix are reduced
to one. The unknown parameter is determined by minimizing the
discretization errors of the element formulations. The finite
element formulation obtained from the parametric stiffness
matrix is compared with the governing equation of transverse
membrane allowing identification of the unattributed parameter
by minimizing the discretization errors.

The membrane elements with area DA¼DxDy are assembled
to create a regular mesh for a four-node rectangular membrane
element with free edges as shown in Fig. 2. In the assembled
model, one discrete equations of motion for a typical internal
node (i, j) is formed. This discrete governing equation is then
converted to continuous series form by defining the deformations
in the neighboring nodes using Taylor series expansions of
deformations in node (i, j),

di71,j71 ¼ di,jþ
X1
n ¼ 1

1

n!
7Dx

@

@x
7Dy

@

@y

� �n

di,j ð14Þ
This process transforms the discrete finite element equations
into a partial differential equation having terms of increasing
order of smallness OðDx2n,Dy2nÞ n¼1, 2,y. The resultant contin-
uous differential equations must produce the governing equation
of motion and boundary conditions for transverse membrane
motion [17]:

P
@2w

@x2
þ
@2w

@y2

 !
þFðx,yÞ ¼ 0

@w

@x

���
x ¼ 0,Dx

¼ 0,
@w

@y

���
y ¼ 0,Dy

¼ 0 ð15Þ

where P is the surface tension of element and F(x,y) is the external
lateral force.

The differential equations in internal nodes of the assembled
model are of even orders of Dx and differential equations
corresponding to the boundary and corner nodes contain all
orders of Dx. First, the second-order terms in the internal nodes
are compared with the classical membrane Eq. (15), and if the
differential equation is satisfied at that order of smallness, the
fourth-order terms are investigated, and so on, until the unat-
tributed stiffness parameters are exhausted.

The internal nodes second-order terms form the following
partial deferential equation:

P
@2w

@x2
þ
@2w

@y2

" #
¼ 0 ð16Þ

Eq. (16) represents the equation of motion of membrane
theory. Next, the fourth order term of internal nodes is consid-
ered:

DA2P
@2

@x2

1

12q

@2w

@x2
þ

1

4q
þ

q

4
�
kk11

2

� �
@2w

@y2

 !"

þ
@2

@y2

q

12

@2w

@y2
þ

1

4q
þ

q

4
�
kk11

2

� �
@2w

@x2

 !#
¼ 0 ð17Þ

Eq. (17) represents the equation of motion (15) if k¼ Pand the
following requirements are met:

1

4

1

q
þq�2k11

� �
¼

q

12
ð18Þ

1

4

1

q
þq�2k11

� �
¼

1

12q
ð19Þ

Obviously the two Eqs. (18)–(19), cannot be satisfied for
different aspect ratios q, therefore one may look for a least
squares solution by assigning

k11 ¼
5

12
qþ

1

q

� �
ð20Þ

The residues of Eq. (17) would be zero if and only if the aspect
ratio q is unity and the discretization errors are of sixth order. One
may evaluate the discretization errors in the boundary nodes
using the expression defined in Eq. (20). This would lead to fourth
order discretization errors in the boundary nodes.



Fig. 3. Errors in estimating mid node deflection of a square membrane (circles –

proposed model, stars – bi-linear shape function).

Fig. 4. Rectangular plane stress element.
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The performance of the newly developed model and its
convergence properties are demonstrated using a numerical
example. A clamped square membrane with area of A, surface
tension of P, subjected to uniformly distributed load F, is modeled
using two different formulations namely the stiffness model
obtained from bi-linear shape functions and the stiffness matrix
developed using inverse approach. The center deflection d of the
membrane obtained from exact solution is d¼ 0:1474ðFA=PÞ. Fig. 3
shows the error in estimation of the static deflection of mem-
brane center node as the number of elements is uniformly
increased. As shown in Fig. 3, the convergence rate in the bi-
linear model is of second order while the convergence rate of the
model formed using the proposed stiffness matrix is of fourth
order. This example demonstrates the parameterization and error
analysis steps required in developing finite element models using
an inverse approach.

In the following, a parametric model for rectangular plane
stress element is established and the element parameters are
obtained using an inverse approach. The error minimization is
performed by a new approach which distributes the errors
uniformly over the entire domain and sets the cumulative errors
to zero.
4. Parametric plane stress model

A rectangular plane stress element with four nodes, two
degrees of freedoms per node is considered. The displacement
vector of element is

d¼ d1,d2,d3,d4

� �T
, di ¼ ½ui,vi�, i¼ 1,:::,4 ð21Þ

where ui and vi correspond to the displacements at node i in
direction of X and Y as shown in Fig. 4. Also the element
dimensions are Dx and Dy. The element has 8�8 symmetric
positive-definite mass matrix and positive semi-definite stiffness
matrix as,

K ¼ k

K11 K12 K13 K14

K22 K23 K24

K33 K34

sym K44

2
66664

3
77775;M¼DxDy

M11 M12 M13 M14

M22 M23 M24

M33 M34

sym M44

2
66664

3
77775
ð22Þ

In Eq. (22) k is a positive real scalar, and Kij,Mij, i,j¼ 1,:::,4 are
2�2 sub-matrices. In general, the stiffness and mass matrices of
plane stress element have 36 unknown parameters. The element
has two symmetric axes as shown in Fig. 4. Rotation of the
element by p radians about one of these axes does not affect the
stiffness and mass models. These rotations are equivalent to
transforming the mass and stiffness matrices using the following
transformation matrices:

Txx ¼

0 0 0 R

0 0 R 0

0 R 0 0

R 0 0 0

2
6664

3
7775, Tyy ¼

0 S 0 0

S 0 0 0

0 0 0 S

0 0 S 0

2
6664

3
7775 ð23Þ

where

R¼
1 0

0 �1

� �
, S¼

�1 0

0 1

� �
ð24Þ

Applying these transformations, one obtains

TT
yyKTyy ¼ K , TT

xxKTxx ¼ K

TT
yyMTyy ¼M, TT

xxMTxx ¼M ð25Þ

Applying the constraints introduced in (25) the number of
independent parameters in the stiffness and mass matrices is
reduced from 36 to 12.

The plane stress element has the three rigid body modes,

FT
R ¼

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

�q=2 1=2 �q=2 �1=2 q=2 �1=2 q=2 1=2

2
64

3
75

q¼Dy=Dx ð26Þ

The rigid-body modes occupy the null space of K, as expressed
in Eq. (1). This leads to six independent equations and the number
of independent parameters in the stiffness matrix reduces to 6.
The plane stress element also has three constant modes as,

FT
C ¼

�1=2 0 �1=2 0 1=2 0 1=2 0

0 �1=2 0 1=2 0 1=2 0 �1=2

�q=2 �1=2 q=2 �1=2 q=2 1=2 �q=2 1=2

2
64

3
75

q¼Dy=Dx ð27Þ

Introducing these constant strain modes into Eq. (3) and using
Eq. (4), three more parameters are defined,

k14 ¼
Ehð1�4k12ð1þuÞÞ

4kð1þuÞ , k13 ¼
Ehð2k11ðu2�1ÞþqÞ

2kð1�u2Þ

k28 ¼
Ehð2qk22ðu2�1Þþ1Þ

2kqð1�u2Þ
ð28Þ

The number of independent parameters in stiffness matrix
reduces to 3; these independent parameters are selected as
k11, k12, k22. The parametric stiffness of plane stress element can
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be defined using these three independent parameters as

K11 ¼ K33 ¼
k11 k12

k12 k22

" #
, K22 ¼ K44 ¼ ST K11S, K24 ¼ ST K13S

K12 ¼ K34 ¼
k13 k14

�k14 �k22þqðk12þk14Þ

" #
,

K14 ¼ KT
23 ¼

k11�
1
q ðk12þk14Þ �k14

k14 k28

" #

K13 ¼

1
q ðk12þk14Þ�k13 �k12

�k12 �qðk12þk14Þ�k28

" #
ð29Þ

Appling rigid body modes (26) and using Eq. (2), the unknown
parameters in mass matrix of plane stress reduce to 9,
M11 ¼M33 ¼
m11 m12

m12 m22

" #
, M12 ¼M34 ¼

m13 m14

�m14 �m24

" #
,

M22 ¼M44 ¼ RT M11R

M13 ¼
m15 m16

m16 m26

" #
, M23 ¼ RT M14R, M24 ¼ RT M13R

M14 ¼
�m11�m13�m15þ

1
4 m13þm15þm12þm14�m16þm22�m24þ

1
12

m24�m15�m12�m14þm16þm22�m13�
1

12 �m22�m24�m26þ
1
4

" #
ð30Þ
These unknown parameters are determined by converting the
discrete finite element equations to continuous partial differential
equations and comparing them with the in-plane displacement
governing equations.

In order to perform the error analysis, the elements with equal
areas of DA¼DxDy are assembled to create a regular mesh for a
rectangular membrane with free edges. Fig. 5 shows four ele-
ments connected at a common node (i, j). Using the Taylor series
expansion the finite element discrete equations in each node can
be converted to continuous partial differential equations having
terms of increasing order of smallness, OðDx2n, Dy2nÞ, n¼1, 2, y .
These partial differential equations are compared with the in-
plane displacement governing equations in horizontal and verti-
cal directions [18]:

Eh
1

1�u2

@2u

@x2
þ

1

2ð1�uÞ
@2v

@x@y
þ

1

2ð1þuÞ
@2u

@y2

 !
¼ r @

2u

@t2
ð31Þ

Eh
1

2ð1þuÞ
@2v

@x2
þ

1

2ð1�uÞ
@2u

@x@y
þ

1

1�u2

@2v

@y2

 !
¼ r @

2v

@t2
ð32Þ

The comparison of continuous differential equations in series
form with the exact governing equations is started from the
Fig. 5. Assembled plane stress model.
lowest order terms. The zero and first order terms of internal and
boundary nodes introduce no new information on unknown
parameters. The second order terms of internal nodes in the X

and Y directions are

k 1

1�u2

@2u

@x2
þ4k12

@2v

@x@y
þ

1

2ð1þuÞ
@2u

@y2

 !
¼ r @

2u

@t2
ð33Þ

k 1

1�u2

@2u

@x2
þ4k12

@2v

@x@y
þ

1

2ð1þuÞ
@2u

@y2

 !
¼ r @

2v

@t2
ð34Þ

Comparing Eqs. (33)–(34) with governing Eqs. (31)–(32), one
obtains,

k12 ¼
1

8ð1�uÞ
; k¼ Eh ð35Þ
First order terms in boundary nodes lead to the boundary
condition requirements,

q

u2�1

@u

@x
þu

@v

@y

� �
ð36Þ

q

2ð1þuÞ
@u

@y
þ
@v

@x

� �
ð37Þ

The number of parameters in the stiffness matrix (29) is
reduced to 2 unknowns of k11 and k22. Further constrains are
imposed on the entries of the rectangular plane stress stiffness
matrix by considering rotation of the element about an axis
normal to its plane. The element has an aspect ratio of
q¼Dy=Dx and rotation of the element about normal axis to its
plane by p/2 radians changes q to 1/q in the stiffness and mass
entries,

K
1

q

� �
¼ TT

zzKðqÞTzz, Tzz ¼

0 0 0 Q

Q 0 0 0

0 Q 0 0

0 0 Q

2
66664

3
77775, Q ¼ diagð1,�1Þ

M
1

q

� �
¼ TT

zzMðqÞTzz ð38Þ

Using this constraint, one concludes k11 is converted to when q

is changed to 1/q and therefore they may be rewritten in the
following form:

k11 ¼
a
q
þbq, k22 ¼ aqþ

b
q

ð39Þ

Also using constraint (38) the numbers of independent para-
meters in mass matrix is reduced to 5; these are selected as m11,
m12, m14, m15, and m16.

So far the second order error terms in the internal nodes and
the first order terms on the boundaries are set to zero. To
determine k11, k22, and also the unknown parameters of mass
matrix the fourth order errors of internal nodes, the third order
error terms on the boundary edges and second order error terms
on the corner nodes are investigated simultaneously. This is due
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to the fact that accumulated errors of each set of nodes, mid,
boundary and corner nodes are of the same order. Only the
equations associated with the X direction are considered as these
equations are the same as those associated with the Y direction
when the aspect ratio is changed from q to 1/q. The fourth-order
terms at internal nodes are,

Eh

24qð1�u2Þ

@2

@x2
2
@2u

@x2
þ2ð1þuÞ

@2v

@x@y
þð24aðu2�1Þþ6ð1�uÞÞ

@2u

@y2

 !

þ
Ehq

24ð1�u2Þ

@2

@y2
ð24bðu2�1Þþ12Þ

@2u

@x2
þ2ð1þuÞ

@2v

@x@y
þð1�uÞ

@2u

@y2

 !

�
1

q
2m15þ2m14þ

1

3
þm12�m16�2m11

� �
@2u

@x2@t2

þ
1

6
�2m14�m12

� �
q@2u

@y2@t2
þ4m16

@2v

@y@x@t2
¼ 0 ð40Þ

while the third-order terms at boundary edges are,

Eh

24qð1�u2Þ

@

@x
4
@2u

@x2
þ4ð1þuÞ

@2v

@x@y
þð24aðu2�1Þþ6ð1�uÞÞ

@2u

@y2

 !

þ
Ehq

24ð1�u2Þ

@

@y2
ð24bðu2�1Þþ12Þ

@u

@x
þ4u

@v

@y

� �

�q m12þ
1

72

� �
@2v

@y@t2

�
1

q
2m15þ2m14þ

1

3
þm12�m16�2m11

� �
@2u

@x@t2
¼ 0 ð41Þ

and the second-order terms at four corner nodes are
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The above equations have terms with coefficients of q, and
as the aspect ratio of the element is an arbitrary parameter
each of these terms must represent the in-plane governing
equation of motions or associated boundary conditions inde-
pendently. The stiffness terms of Eqs. (40) and (41) with
coefficient q�1 are
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where D¼ ð1=4�að1þuÞÞ It is obvious by assigning any values
to the unattributed stiffness parameters the residuals of fourth
and third order terms in the mid and boundary nodes will not
vanish and neither their sums. Residuals in Eq. (43), apart from
some constants, are
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To address these two conflicting requirements, one may
minimize the columns sums of the coefficient matrix:
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Column sums of the coefficient matrix in Eq. (44b) are
minimized to reduce the cumulative (bias) error in estimates of
equation of motion coefficients in each node. The difference
between the obtained cumulative (bias) errors and the discretiza-
tion errors in Eq. (44a) are
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The above expression clearly indicates even distribution of
discretization errors with opposite signs in internal and boundary
nodes.

Minimizing these cumulative errors in least squares sense
leads to

a¼ 1

8ð1þuÞ
ð45Þ

Substituting Eq. (45) into Eq. (42), the term with q�1 repre-
sents the boundary conditions. Next the parameter b is obtained
by minimizing the error in the boundary requirements formed
using the terms in Eqs. (41) and (42) with coefficient q. The same
procedure as in Eq. (44a) is followed to determine the remaining
parameter b by considering terms with coefficient q in Eqs. (41)
and (42). The result is

b¼
7

24ð1�u2Þ
ð46Þ

The obtained stiffness matrix provides the highest possible
accuracy at internal, boundary and corner nodes and compared
with linear displacement assumption (LDA) and linear stress
assumption (LSA) formulations has much faster convergence
rates.

To obtain unknown parameters of mass matrix, the fourth
order terms on the mid nodes and the third order terms on the
plane edges are considered, respectively:
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where g¼ ð2m15þ2m14þ1=3þm12�m16�2m11Þ Assigning any
values to the unknown mass parameters the residuals will not
vanish and neither their sums. Residuals in Eq. (47), apart from
some constants, are
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Minimizing these cumulative errors in least squares sense
leads to

2m15þ2m14þ
1
3þm12�m16�2m11

	 

¼ 23

144 ð49Þ

In least square sense, the second equation of (40) which
contains coefficient of q, represents the governing equations if
one restricts the entries of mass matrix as,

1
6 �2m14�m12 ¼

13
72 ð50Þ

In order to minimize discretization errors, m16 and m12 are
determined from Eqs. (40) to (41) as

m16 ¼ 0; m12 ¼
�1

72
ð51Þ



Table 1
Estimated beam tip deflection (the exact solution 0.1080780).

Element type Tip deflection

Constant strain triangle (CST) [20] 0.005044

Linear displacement assumption (LDA) [2] 0.010088

Linear stress assumption (LSA)[3] 0.10023

Strain mode element, MSC/NASTRAN [21] 0.096

Proposed model 0.10225
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Applying all these requirements reduces the number of unat-
tributed mass parameters to one. The remaining mass parameter
m11 is obtained by minimizing the errors of sixth order terms on
the mid nodes and five order terms on the boundary nodes. The
sixth-order terms at the internal nodes and the five-order terms
at the boundary nodes are, respectively:
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where c¼ m11�138=1728
	 


Minimizing the bias errors, m11 is
determined as,

m11 ¼
23

216 ð54Þ

The proposed mass matrix provides the highest possible
accuracy at the internal and boundary nodes whilst producing
the same order of error as the bi-linear shape functions (BDR)
element on the corner nodes. In what follows the improvement of
the new model in predicting the plane stress behavior is
demonstrated.
Fig. 7. Errors in estimating the tip deflection (q¼ 1=3, n¼ 0:3) (circle – proposed

model, star – LSA, and square – LDA).
5. Numerical examples

Three test cases are used to demonstrate the efficiency of the
new plane stress element. Static and dynamic behavior of a plane
stress element is predicted using the proposed formulation and
compared with those obtained from established shape-function
formulations.

The first case study is a cantilever beam with aspect ratio of
1/30 where its mesh and loading conditions are shown in Fig. 6
similar to Felippa’s [10] and MacNeal and Harder [19]. The beam
has module of elasticity of 1e7 Pa, Poisson’s ratio of 0.3, length of
1 m, and thickness of 1 mm. A unit (1 N) concentrated shear force
is applied to the beam end with the exact tip deflection of
d¼ ðPL3=3EIzÞþðPL=GAÞ ¼ 0:1080780, where G is shear module
and Iz is the cross section moment of inertia. The results of tip
deflection modeled with six elements are shown in Table 1. The
proposed model in this paper is compared with linear stress
assumption (LSA) [3], constant strain triangle (CST) [20], strain
mode [21], and linear displacement assumption (LDA) [2] element
formulations. The LDA and CST elements suffer from in-plane
bending problem as the other three formulations predict the tip
deflection with improved accuracy and the proposed model
produces the best results.

The second example evaluates the behavior of a thick canti-
lever beam of unit length with aspect ratio of h/L¼1/3 as shown
Fig. 6. Geometry, boundary conditions and loading of the cantilever beam.
in Fig. 6. Increasing the number of elements along the X-axis,
Felippa [10] showed that the assumed stress element has better
accuracy than Allman triangle with drilling freedoms [22],
CST [20], and strain mode element [21]. Many researchers have
used the same problem as a test case for the in-plan bending
elements. From the existing models, the results of LSA [3]
formulation and LDA [2] formulation are listed; the parameters
of the LSA and LDA formulations are the closest to the optimum
values hence, produce smaller errors compared to other models
reported in the literature. The value of shear force is unity (1 N),
module of elasticity 1000 Pa, thickness is 1 mm, the Poisson ratio
is 0.3 and the exact solution of displacement is 116.33 mm. Fig. 7
shows the non-dimensional error of tip deflection plotted as a
function of number of elements along one side of the model.
Comparing the values obtained using the LSA, LDA and the new
formulations; one notices a significant improvement in predicting
the static behavior of the beam using the new formulation. Next
the beam height is reduced to h¼L/6. The loading remains the
same but the exact tip deflection increases to 873.33 mm. Fig. 8
shows the error of non-dimensional tip deflection plotted as a
function of number of elements. It can be seen that the new
proposed model is more accurate and has fast convergence in
predicting the exact solution compared to LSA and LDA model
predictions.

In the third case study in-plane vibrations of a square plate
with various boundary conditions are considered [23]. The rate of
convergence in the fundamental frequency of in-plane motion
is determined with proposed mass and stiffness matrices and
compared with LDA and LSA models predictions. In the study
convergence of fundamental eigen-value of a square plate in
dimensionless form is considered. The dimensionless form of

eigen-value is l2
¼oa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1�n2Þ=E

p
. The plate with side length a

is isotropic with modulus E, the Poisson ratio n, volumetric mass
density r, and circular frequency of vibration o. The results for
two different cases of free and clamped boundary conditions are



Fig. 9. Rate of convergence in estimating the fundamental frequency of a free

square plate in in-plane motion (circle – proposed model, star – LSA, and square –

LDA).

Fig. 10. Rate of convergence in estimating the fundamental frequency of a

clamped square plate in in-plane motion (circle – proposed model, star – LSA,

and square – LDA).

Fig. 8. Errors in estimating the tip deflection (q¼ 1=6, n¼ 0:3) (circle – proposed

model, star – LSA, and square – LDA).
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shown in Figs. 9 and 10, respectively. As it can be seen from these
figures the proposed model produces superior results compared
to other those models.
6. Conclusion

New stiffness and mass matrices for plane stress and trans-
verse membrane elements are presented using an inverse
approach. In the inverse approach, the criteria that element model
must satisfy is considered and a parametric family of admissible
stiffness and mass matrices are formed. The parameters of the
element model are then obtained by minimizing the discretiza-
tion errors in the element formulation. In minimizing the dis-
cretization errors, special attention is paid on reducing the sum of
errors over the assembled model nodes hence creating a model
with minimum bias errors. New formulation developed for
rectangle plane stress element improves static and eigenvalues
problems considerably in comparison with the best model
presented in previous studies. The improvements in elements
formulation are demonstrated using numerical case studies. The
added accuracy in the new models requires no extra computa-
tional effort and it may be implemented easily into the existing
finite element codes.
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