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This article presents an inverse approach to provide shape functions associate
with a superconvergent thin plate element formulation. In the proposed
approach, candidates for shape functions of an element are selected using a
series of functions such as, trigonometric series, simple and hierarchical
polynomials or a combination of them. Next, one imposes all the physical,
geometrical, compatibility and completeness constraints associated with the
concerned element on these function. In the final stage, the unknown parame-
ters of the shape functions are determined by minimizing the discrimination
errors in the element formulation. The proposed method is employed to deter-
mine the shape functions associate with the superconvergent plate element
formulation. The accuracy of the obtained formulation is examined against
previously developed plate models using several numerical examples. These
comparisons indicate the developed model provides more accurate results both
in local and global coordinates system.

Keywords: shape functions; thin Kirchhoff plate; hierarchal polynomials;
inverse approach; superconvergent formulation

1. Introduction

In classical finite element (FE) method, two general approaches, so-called h version and
p version, are used to improve the accuracy of model and its rate of convergence. In h
version, the order of element shape functions is kept fixed, while the number of ele-
ments is increased in such a way that maximum size of the elements, i.e. h, approaches
to zero.[1] On the other hand in p version, the element size remains constant while the
order of the interpolation functions is progressively increased until the desired rate of
convergence is achieved.[2] There are several admissible models reported in the litera-
ture for rod, beam and plate elements based on either of h or p approaches such as
polynomial shape functions,[3–10] spline wavelet shape functions [11–14] and Fourier
p-element.[15]

Employment of an inverse approach is another method to provide an accurate FE
model. In this approach, an accurate element formulation is derived by minimizing the
discritization errors in a parametric element model. Discritization errors arising from
replacing a continuous media by one composed of FEs. An optimum element
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formulation is normally referred to a formulation which leads to results with
superconvergent properties. The inverse approach was introduced by Argyris et al. [16],
Bergan et al. [17], and Simo and Rafai [18] to enforce constraints on the stiffness
formulation and guarantee the element model passing the patch test. MacNeal [19],
Kim [20], Hanssan [21] and Fried et al. [22,23] obtained superconvergent models by
eigenvalue convergence analysis for rod, beam and membrane elements in a local
coordinate. Stavrindis et al. [24] and Ahmadian et al. [25] derived superconvergent ele-
ment formulations by minimizing the discritization errors for several elements.
Ahmadian et al. [26] derived the superconvergent mass matrix for thin plate element by
minimizing the bias error in adjacent nodes. Furthermore, Faroughi [27] developed the
superconvergent formulation for beam element with lateral displacements as sole
degrees of freedom (DOF). In all aforementioned cited papers,[16–27] the superconver-
gent formulations are obtained in local coordinate systems without using shape
functions. The absence of shape functions in element formulation is the drawback of
the inverse method owing to the fact that the formulation cannot be transformed using
these functions from local to global coordinates. Therefore, this restricts the use of the
superconvergent models to be applied in modelling practical structures.

In the literature, there are few contributions in order to find shape functions associ-
ated with the superconvergent element models. Kim [20] developed a method to find
shape functions of superconvergent rod element using a linear combination of shape
functions related to lumped and consistent models. The mentioned method cannot be
applied for elements possessing rotation as DOF as the superconvergent mass matrix of
these elements cannot be established using a linear combination of lumped and consis-
tent models.[24] Further, Ahmadian et al. [28,29] proposed a method to obtain shape
functions of superconvergent mass matrices using a series of trigonometric functions.
They obtained the shape functions associated with superconvergent rod, beam and trans-
verse vibration membrane elements. Recently, Faroughi et al. [30] developed a method
to obtain shape functions associated with superconvergent stiffness matrix (SCSM) of
membrane element using hierarchical polynomials which have been employed as shape
functions of transverse vibrating membrane,[31] and plate [32,33] elements. Beslin
et al. [34] used hierarchical trigonometric shape functions for predicting high-order
modes of bending plate.

Ahmadian et al. [25] obtained the SCSM of thin plate element using inverse
method. They showed that the accuracy of the obtained stiffness matrix is of 4th order,
O(h4), while the accuracy of the other models documented in the literature is of order
two. Despite its superiority in convergence, the model suffers from lake of displacement
function, i.e. there are no shape functions corresponding to the SCSM. This prevents
one to transform the element from local to global coordinates using the existing meth-
ods. The goal of this article was to obtain the shape functions associated with SCSM of
thin Kirchhoff plate element. In order to form the shape functions of this SCSM, the
hierarchical polynomials are added to the classical shape functions of thin plate element.
The hierarchal polynomial employed in the present work includes some unattributed
coefficients. These coefficients are determined such that the corresponding shape
functions satisfy the general requirements of compatibility, completeness, physical
constraints and finally regenerating the superconvergent element formulation.

The hierarchical FE method is successfully applied to vibration and buckling
problems of plates and shells.[35] Legendre orthogonal polynomials and trigonometric
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functions have been used as the hierarchical shape functions. Bardell was the first who
carried out early researches about applying the hierarchical FE to investigate the vibra-
tion flat and skew plate. For instance, he studied vibration problems of thin cylindrical
shell panels using K-orthogonal polynomials satisfying both displacement and slope
continuity (C1 continuity) in [32]. Further, Barrette et al. [36] studied the vibration of
stiffened plates using hierarchical trigonometric functions and Beslin et al. [34] investi-
gated a hierarchical functions set for predicting very high-order plate bending modes.
Houmat [31] also used hierarchical FE analysis for vibration of membranes. The com-
plementary hierarchical polynomials are used in this study to improve the strain field of
the element, resulting accurate modelling of strain energy and fast eigen convergence of
the model.

The outline of the article is as follows: Section 2 presents the algorithm to obtain
the shape functions associated with superconvergent formulation. In Section 3, the
development of shape functions for SCSM of thin plate element is described. Section 4
investigates the convergence rates of the SCSM in local and global coordinate systems
followed by concluding remarks in Section 5.

2. General algorithm to describe the shape functions

In classical FE, shape functions of an element are supposed to have unknown coeffi-
cients, which are determined by different methods such as assigning a unite displace-
ment to one DOF while other DOF has zero displacements. Here, a new method is
proposed to obtain shape functions. In this method, shape functions are inversely
obtained by maximizing the eigen solution convergence of associated mass and stiffness
matrices. In order to inversely generate the shape functions, the following procedure
should be taken.

Consider an element with n DOF and n shape functions. Initially, one selects n
functions such as simple polynomials from Pascal triangle, trigonometric series, hierar-
chical polynomials, etc. These functions with their unknown coefficients are considered
as candidate shape functions for the element. Next, the following constraints are
imposed to the selected functions in order to obtain shape functions of element.

(1) The value of each shape function should be equal to unity on its associated
DOF and equal to zero on the other DOF.

(2) Edge modes nonzero along one edge and zero at all other edges and vertices.
Thus, it postulates that edges have a magnitude of zero over any boundary of
the element (a side in 2D, a face in 3D), which does not include node i.

(3) Each shape function has interelements compatibility and degrees of continuity
(C0, C1, …) and also satisfies completeness conditions.

(4) Moreover, the shape functions must satisfy the physical constraint of the ele-
ment. These physical requirements are related to the geometry of elements,
including axes of symmetry of the element, rigid body, etc.

The first three conditions are extensively explained in the literature, but the last
condition requires further explanation. In order to better understand the physical
requirement, consider a two-node rod element with unit length, as an example. Each
node has one DOF as shown in Figure 1. The rod element has one axis of symmetry
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and one rigid body mode. If the rod element is rotated 180° about the axis of
symmetry, the geometry of rod element will remain constant, but the positions of nodes
1 and 2 will be exchanged. Therefore, this behaviour must be reflected by shape
functions which are formulated as follows

N2 fð Þ ¼ N1 1� fð Þ (1)

Here, ζ is natural coordinates of the element. Indeed, the calculated shape functions
should be able to generate the rigid body modes of the element. It means the calculated
shape functions must represent the deformed shape of element compatible with rigid
body requirements. Here, for a rod element having one rigid body mode, this require-
ment leads to

N1 fð Þ þ N2 fð Þ ¼ 1 ! N2 fð Þ ¼ 1� N1 fð Þ (2)

After applying physical constraints, the independent shape functions for each element
will be determined. At the final stage, the independent shape functions must reproduce
the entries superconvergent formulation defined by the inverse approach. Therefore, the
number of equations required to find these unknown coefficients will be determined by
employing all the mentioned requirements which are needed to be satisfied.

In the following section, shape functions of a two-dimensional plate element are
obtained by enforcing all the geometrical and physical constraints on truncated hierar-
chical polynomials.

3. Rectangular thin plate element

Here, a four-node rectangular plate element with dimension, a × b × t is considered as
shown in Figure 2. The element has three DOF at each node. In the literature, there
were several formulations for thin plate elements such as MZC,[8,34] BFS,[37] ZQC
[38] and recently JWU [39] which are developed based on the minimization of energy
functional and virtual work, respectively. The accuracy of these models is of second
order, O(h2).

As mentioned earlier, Ahmadian et al. [25] used the inverse approach to develop a
superconvergent formulation for rectangular plate element. The accuracy of the men-
tioned model is up to fourth order. So far, there is no study addressing shape functions
associated with this model, which is the object in this study. Towards this goal, one
may employ two-dimensional hierarchal polynomial functions and complementary terms
defined based on hierarchal functions to obtain the shape functions of the superconver-
gent plate element considering the following steps. The complementary terms improve

Figure 1. The geometry of rod element.
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the strain field of the element, resulting accurate modelling of strain energy and fast
eigen convergence of the model.

First one needs to define the displacement field of the plate element using two-
dimensional hierarchal polynomial functions as follows:

w n; gð Þ ¼ N1 n; gð Þw1 þ N2 n; gð Þh2 þ N3 n; gð Þh3 þ � � � þ N12 n; gð Þh12 (3)

where Ni, i = 1, …, 12 are the shape functions of plate element, and wi and hi are the
displacement and rotation DOF, respectively. ζ and η denote natural coordinates of ele-
ments as shown in Figure 2. Thereafter, twelve functions are selected as candidates for
shape functions of the superconvergent element. In the second step, one may impose
the physical constraints, to determine the independent shape functions. This particular
element has three rigid body modes [25] as follows:

UR ¼
1

1=2� f
g� 1=2

2
4

3
5 (4)

The displacement field of Equation (3) must generate the rigid body modes of Equation
(4); this imposes the following requirements on the shape functions of the plate ele-
ment. The first rigid body modes, w n; gð Þ ¼ 1, requires all wi = 1, i = 1, 4, 7, 10 and
hi = 0, i = 2, 3, 5, 6, 8, 9, 11, 12. Imposing these requirements on displacement field of
(3) leads to

N1 f; gð Þ þ N4 f; gð Þ þ N7 f; gð Þ þ N10 f; gð Þ ¼ 1 (5)

In a similar manner, one may calculate the nodal displacements in other two rigid body
modes and obtain the following requirements by introducing these nodal variables to
the displacement field of Equation (3):

� 1
2N1 f; gð Þ þ N2 f; gð Þ þ 1

2N4 f; gð Þ þ N5 f; gð Þ
þ 1

2N7 f; gð Þ þ N8 f; gð Þ � 1
2N10 f; gð Þ þ N11 f; gð Þ ¼ g� 1

2
(6)

� 1
2N1 f; gð Þ þ N2 f; gð Þ � 1

2N4 f; gð Þ þ N5 f; gð Þ
þ 1

2N7 f; gð Þ þ N8 f; gð Þ þ 1
2N10 f; gð Þ þ N11 f; gð Þ ¼ 1

2 � f
(7)

Figure 2. The geometry of rectangular thin plate element.
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Another physical requirement is arising from the axes of symmetry of the element.
As depicted in Figure 2, the considered element has two axes of symmetry. When the
element is rotated by 180° about ζ or η axes, the geometry of the element remains
the same; however, nodes 1, 4 and 1, 2 replaced, respectively, by nodes 2, 3 and
nodes 3, 4. If the element is rotated 90° about an axis normal to the plate, the aspect
ratio of the element will be changed, and consequently, the shape functions corre-
sponding to the rotation DOF are interchanged. Therefore, by employing these
symmetry properties on shape functions, twelve shape functions of the plate element
can be recast by two independent shape functions as reported in Table 1.

The two independent shape functions of the plate element are selected in the form
of following:

N1 f; gð Þ ¼ f1 f; gð Þ þ
XN
i¼0

Fi f; gð Þ (8-a)

N2 f; gð Þ ¼ g1 f; gð Þ þ
XN
i¼0

Gi f; gð Þ (8-b)

The first part of Equations (8-a) and (8-b), i.e. f1 f; gð Þ and g1 f; gð Þ, satisfies the element
boundary conditions and are adopted from the classical plate element model shape
functions, MZC,[8]

f1 f; gð Þ ¼ 1� fg� 3� 2fð Þf2 1� gð Þ � 1� fð Þ 3� 2gð Þg2 (9)

g1 f; gð Þ ¼ 1� fð Þg 1� gð Þ2 (10)

The N complementary terms of shape functions Fi f; gð Þ and Gi f; gð Þ; i ¼ 0; . . .;N ; are
defined based on hierarchal functions, which are described using integrated Legendre
polynomials. Zhu [40] primarily presented the polynomial set, and Bardell [32,41] used
them to predict natural flexural vibrations of rectangular plates and skew plates. Zhu
[40] introduced the polynomial set as:

Ps
m fð Þ ¼

Xm=2
n¼0

�1ð Þn
2nn!

2m� 2n� 2s� 1ð Þ!!
m� 2nð Þ! fm�2n (11)

where ζ is the natural coordinate of the element, n is a counter, m is the polynomial
degree, m!! ¼ m m� 2ð Þ � � � 2 or 1ð Þ, 0!! ¼ 1, and m/2 denotes the integer part of this
product.[32] Equation (11) can be used as hierarchal shape functions with Cs−1 continu-
ity.[34] Since shape functions of the plate element have C1 continuity; the value of s in

Table 1. The relationship between twelve shape functions of plate element.

Rotation about normal axis Rotation about X, Y Rotation about X, Y

N1 n; gð Þ N2 n; gð Þ N3 n; gð Þ ¼ �N2 g; nð Þ
N4 n; gð Þ ¼ N1 n; 1� gð Þ N5 n; gð Þ ¼ �N2 n; 1� gð Þ N6 n; gð Þ ¼ �N2 1� g; nð Þ
N7 n; gð Þ ¼ N1 1� n; 1� gð Þ N8 n; gð Þ ¼ �N2 1� n; 1� gð Þ N9 n; gð Þ ¼ N2 1� g; 1� nð Þ
N10 n; gð Þ ¼ N1 1� n; gð Þ N11 n; gð Þ ¼ N2 1� n; gð Þ N12 n; gð Þ ¼ N2 g; 1� nð Þ

6 S. Faroughi and H. Ahmadian
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Ps
m fð Þ is set to two. Therefore, Equation (11) can be rewritten as follow for element

which local coordinate fall in the interval from 0 to 1:

Ps¼2
m¼r�1 fð Þ ¼

Xr�1ð Þ=2

n¼0

�1ð Þ2
2nn!

2r � 2n� 7ð Þ!!
r � 2nð Þ! 2n� 1ð Þr�2n�1 r[ 4 (12)

Here, r is equal to m + 1. Table 2 reports these functions for orders of polynomial
corresponding to 5 < r < 7 in which it is noticeable that the polynomials sets have zero
displacement and slops at element nodes.

For two-dimensional, 2D, elements, hierarchal functions are constructed by multi-
plications of two 1D functions defined in Equation (12). Therefore, the complementary
terms of Equation (8) can be described as follows:

Fi f; gð Þ ¼ Ps¼2
m¼r�1 fð ÞPs¼2

m¼r�1 gð Þ
Gi f; gð Þ ¼ Ps¼2

m¼r�1 fð ÞPs¼2
m¼r�1 gð Þ

(13)

The complementary terms in the first shape function, N1, must be odd functions,
because of anti-symmetric deformation w f; gð Þ with respect to the element’s natural
coordinates. In other words, the element has two axes of symmetry and an applied
displacement at one node, whereas other nodes are fixed, which leads to an anti-
symmetric deformation w f; gð Þ with respect to the natural coordinate of the element.
As a result, the selected form for the shape function, N1, should reflect this fact.
However, the complementary terms in the second shape function, N2, include both
odd and even terms because there is no constraint on deformation h f; gð Þ with respect
to the element’s natural coordinates. Therefore, by substituting the Equations (9),
(10), (12) and (13) into Equations (8-a) and (8-b), the selected shape functions are
presented as follows:

N1 f; gð Þ ¼ f1 f; gð Þ þ
XN
r;t¼5

Fi f; gð Þ ¼ 1� fg� 3� 2fð Þf2 1� gð Þ � 1� fð Þ 3� 2gð Þg2

þ ðar Ps¼2
i fð Þ þ � � �ÞðatPs¼2

i gð Þ þ � � �Þ; r; t ¼ 6; 8; . . .;N

N2 f; gð Þ ¼ g1 f; gð Þ þ
XM
n;m¼5

Gi f; gð Þ 1� fð Þg 1� gð Þ2þðb1n Ps¼2
n fð Þ þ � � �Þðb2mPs¼2

m gð Þ

þ � � �Þ; n;m ¼ 5; 6; . . .;M

(14)

It should be noted that the unknown coefficients of the complementary term of shape
function N1 must be equal, ar = at, due to the anti-symmetric deflection of shape func-
tion N1 in both ξ and η directions. In the third step, functions introduced in Equation
(14) must produce the entries of SCSM. This can be achieved by,[30]

Ki;j ¼
Z1

0

Z1

0

�T Ni f; gð Þð ÞD f; gð Þ� Ni f; gð Þð Þdfdg (15)

The operator � describes the strain field of the element, and D f; gð Þ denotes the elastic
constant function.[30] Employing the proposed shape functions, Equation (14), into Equa-
tion (15), the following equations for entries of stiffness matrix are obtained as follows:

Inverse Problems in Science and Engineering 7
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k1;4 þ k1;7 þ 4 k1;5 � 4 k1;8 ¼ 6; 2 k2;6 � 2 k2;9 � k1;6 þ k1;9 þ v ¼ 0:

k2;11 þ k2;8 � k1;8 � 2 k2;9 ¼ 4288
1;091;475 a26b

2
15b

2
26 � 17;152

1;091;475 b212b
2
22

k1;10 þ k1;7 � 4 k1;12 � 4 k1;9 ¼ 6; k3;12 þ k3;9 þ k1;12
3 þ k1;9

3 ¼ 0;

k2;11 þ k2;8 � k1;8 � 2 k2;9 ¼ � 125
1225 b215b

2
25 þ 2944

72;765 b215b
2
26 � 17;152

1;091;475 b216b
2
26

k1;7 � k1;6 þ 2 k1;8 � k1;9 � 2þ v ¼ 5888
72;765 b15b25b16b26 þ 4288

1;091;475 a26b16b26

k2;5 þ k2;8 � k1;5
3 � k1;8

3 ¼ � 128
1225 b215b

2
25 þ 2944

72;765 b215b
2
26;

k1;7 þ 2 k1;8 � 2 k1;9 ¼ 2;

(16)

Ahmadian et al. [25] show minimum conditions for a stiffness matrix to represent
Kirchhoff plate stiffness model are as follows:

k1;10þk1;7�4k1;12�4k1;9¼6p2;k1;7þ2k1;8�2k1;9¼2;k3;12þk3;9þk1;12
3 þk1;9

3 ¼0;
k1;4þk1;7þ4k1;5�4k1;8¼ 6

p2;k3;6þk3;9�2k2;9þk1;9¼0;k2;11þk2;8�k1;8�2k2;9¼0;

k2;5þk2;8�k1;5
3 �k1;8

3 ¼0;k1;7�k1;6þ2k1;8�k1;9¼2�v;2k2;6�2k2;9�k1;6þk1;9¼�v

(17)

where p and v represent the aspect ratio and Poisson ratio, respectively. Satisfying these
conditions ensures the FE discrete differential equations have converging solution to
Kirchhoff plate governing equation. Overall, requirements defined by Equations (5)–(7)
(16) and (17) provide five independent constraints to be satisfied. Therefore, five
unknown coefficients must be considered. Two unknown coefficients are obtained when
Equations (5)–(7) and (16) are satisfied. Hence, the following relationship between
coefficients must be met as follows:

b15 ¼ 0; a6 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
b16b26

p
(18)

In order to determine the three unknown coefficients, Equation (18) is substituted into
Equation (17). Therefore, Equation (17) can be re-written based on three unknown
coefficients as follows:

k15 ¼ 17; 152

1; 091; 475
b216 b

2
26 � 1

5
vþ 11

5
; k29 ¼ 4288

1; 091; 475
b216b

2
26

k28 ¼ 1472

72; 765
b216b

2
25 �

1

15
v� 4288

1; 091; 475
b216b

2
26 þ

2

5

(19)

Table 2. Hierarchal polynomials obtained from Equation (11).

p5 nð Þ ¼ 1
8 � 1

4 n
2 þ 1

8 n
4

p6 nð Þ ¼ 1
8 n� 1

4 n
3 þ 1

8 n
5

p7 nð Þ ¼ � 1
48 þ 3

16 n
2 � 5

16 n
4 þ 7

48 n
6
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The remaining three unknown coefficients can be readily determined by equating the
Equation (19) with the Equation (20). Equation 20 is obtained from the SCSM [25]:

k15 ¼ 14

5
; k29 ¼ � 2

10
; k28 ¼ 1

15
(20)

However, it should be mentioned that the values obtained by equating two Equations
(19) and (20) are unacceptable because these equations are not independent. For this
reason, one may apply a new strategy to determine these three unknowns. This strategy
is based on the theorem that two m × m matrices are similar when they have the same
characteristic polynomial and hence eigenvalues. Therefore, here, the eigenvalues of
both parametric stiffness matrix and the SCSM must be identical. Indeed, the three
unknown coefficients are obtained in such a way that the discrepancy between eigenval-
ues of both matrices approaches to zero. The objective function which is the norm of
discrepancy between eigenvalues of both matrices is defined as follows:

P ¼ k4;scsm � k4;par
� �2

; k5;scsm � k5;par
� �2

; . . .; k12;scsm � k12;par
� �2���

���
s.t

ki;par [ 0; i ¼ 4; 5; . . .; 12

(21)

where ki;scsm denotes the nonzero eigenvalues of the SCSM, and ki;par represents the
nonzero eigenvalues of the parametric stiffness matrix. Here, genetic algorithm (GA) as
the global search is taken into account to solve numerically the constraint minimization
problem.

3.1. Minimization using genetic algorithm

A GA is a stochastic global search technique based on Darwin’s evolution theorem of
‘survival of fittest’.[42,43] GA is a powerful approach for a wide range of optimization
problems. The method was first inspired by Holland [44] and used by many others as
one of the most popular and practical meta-heuristic approaches. In this study, a GA is
employed as a global optimizer to find optimal solution of the attempted problem. In
order to minimize Equation (21), the following steps need to be considered.

• First, an initial population of chromosomes is randomly generated as a predefined
population size.

• Second, each chromosome in the population is evaluated through a predefined
fitness function, Equation (21).

• Next, the roulette wheel technique is employed to select parents, and then the
crossover and mutation operators are used to produce new offspring (children)
from the selected parents, and newly generated offspring are estimated according
to fitness function.

• Then, the new generation is chosen and produced from the parents and offspring
using the roulette wheel and elitism policy.

• Finally, the pre-described stopping criterion for the algorithm is checked. If the
algorithm reaches to a predefined number of iterations, the search process
terminates, otherwise the algorithm goes to step 3.

Details of each step are described as follows.
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3.1.1. Chromosome representation

A segmented chromosome is developed in order to encode solutions of the problem into
chromosome scheme. The initial chromosome is 1� n matrix which n stands for the
number of variables. The initial chromosome is created through a pure random process
between −3 and 3. Each chromosome (population) encodes a solution of the problem.
Therefore, based on the GA evolutionary procedure, at the end of GA procedure, good
solutions will be obtained (based on population size), that individually represents a
shape functions.

3.1.2. Selecting operator

Selecting two individuals (parent) from the current population is performed in the selec-
tion operation process. Here, one may employ the roulette wheel selection procedure
where the selection probability of each chromosome is proportional to its fitness value.
In the proposed algorithm, the selection probability of chromosome i denoted by
pselectionðiÞ is stated by Equation (22) where FtðiÞ is the fitness of chromosome i [45]:

pselectionðiÞ ¼ 1=FtðiÞP
j 1=FtðjÞ

(22)

It should be mentioned that the objective function is considered the value associated
with a chromosome as the fitness value of that chromosome. Since the objective func-
tion of the formulated model is minimization, the reverse of fitness value in Equation
(22) is considered to enhance the selection probability of the chromosome with lower
fitness.

3.1.3. Crossover operator

In the proposed algorithm, one may employ the crossover operator in order to generate
offspring from parents. This is performed in a way that the first and third values of ini-
tial population are exchanged between two parents. Therefore, construct the first child
code is constructed based on the first value of the first parent and the third value of the
second parent, and vice versa, for the second child.

3.1.4. Mutation operator

One may use the mutation operator to bring unexpected changes to the content of a
chromosome. Here, the mutation operator is called as a ‘swap mutation’ where ran-
domly are selected two columns of the initial populations, and then swap their contents.

3.1.5. Reproduction

In this step, one may select the new generation from among the old generation and newly
generated offspring. Next, two mechanisms are used, namely elitism policy and roulette
wheel in the proposed algorithm to select the new generation. The elitism mechanism
empowers the intensification capability of the algorithm, and the roulette mechanism
enhances its diversification. One may select the best pe per cent, a pre-determined per
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cent, of the current chromosomes using the elitism policy, and the roulette wheel
technique is used to select the rest of new generation.

3.1.6. Stopping criteria

As a stopping criterion to terminate the computation process of the proposed GA, one
may simply define the maximum number of iterations.

Using the above strategy, the convergence curve vs. the number of iterations for
minimizing the error function, Equation (21), is shown in Figure 3. The following val-
ues are obtained for unknown series coefficients as follows:

b16 ¼ 2:5889; b26 ¼ 2:5032; b25 ¼ �1:2646; (23)

The obtained hierarchal shape functions N1 f; gð Þ and N2 f; gð Þ of the rectangular plate
element are depicted in Figures 4 and 5. The other ten shape functions are obtained by
rotation of N1 f; gð Þ and N2 f; gð Þ about the axis normal to the element plane as shown
in Table 1.

The new consistent mass matrix of thin plate element can be obtained by employing
the new shape functions as follows:

M ¼
Z1

0

Z1

0

NT
i f; gð Þq f; gð ÞNj f; gð Þ Jðx; yÞj jdfdg (24)

where q f; gð Þ is the mass density distribution, and J(x, y) is the Jacobian of the coordi-
nate transformation. Using the new obtained shape functions, plate element formulation
can be transformed from local to global coordinate. Indeed, using these shape functions,
the superconvergent property of the model can be utilized in global coordinate. In order
to transform the element formulation from local to global, the displacement field and
geometry of element are mapped using the new obtained shape function and bilinear
shape functions, respectively.

Figure 3. The convergence curve vs. the number of iterations.
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The numerical performance of the plate element is evaluated in the local and global
coordinates using these new shape functions. Indeed, comparisons on the convergence
rate for estimating the plate’s deflection and its associated eigenvalues are discussed in
the next section.

4. Numerical examples

Three numerical examples are used to demonstrate the competence of the model
obtained by the proposed shape functions. Here, errors in estimation of static deflection
and eigenvalues of the thin plate are compared with the numerical FE results and the
analytical solution. MATLAB version 7.4 (R2007a) is utilized for computational
calculation programming. The aim of these examples is to numerically illustrate the fact
that the new formulation is the most robust model for analysing the static and dynamic
plate problems in local coordinates (examples 1 and 2) and in global coordinates
(example 3), respectively.

Figure 4. Shape function N1 f; gð Þ of thin plate element.

Figure 5. Shape function N2 f; gð Þ of thin plate element.
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4.1. Example 1: a square clamped-simply supported thin plate

A square plate clamped on two opposite edges and simply supported on the remaining
edges subject to a uniformly distributed load and concentrated load separately is mod-
elled using five different formulations including MZC,[8] JWU,[39] ZQC,[38] AFM
[25] and the proposed model. The exact non-dimensional solutions are 0.001256 for the
case of distribute load and 0.0116 for concentrated load.[46] Figures 6 and 7 demon-
strate the errors in the evaluation of the non-dimensional static deflection of the
clamped and simply supported plate’s mid-node, respectively. Indeed, they show the
convergence rate of these models when the number of elements is increased. It is
noticeable from Figures 6 and 7, that the convergence rate for the AFM and proposed
model is the same, which are superior (much faster) than the MZC, JUV and ZQC mod-
els. One may conclude from these examples that the AFM and proposed model are the
best formulation to be used in modelling thin plate in local coordinates.

4.2. Example 2: eigenvalues of square clamped thin plate

In the second example, the eigenvalues of a square clamped thin plate with length ‘a’
are calculated using MZC, AFM, proposed model and the Rayleigh–Ritz [47] approach.
In the proposed model, the mass matrix is defined based on Equation (24); while in
AFM model, the mass matrix is obtained by minimizing the error terms with a least
squares sense.[25] Here, the solution acquired by Rayleigh–Ritz approach is considered
as a reference. Table 3 reports the non-dimensional eigenvalues of a square clamped
thin plate for different element sizes using aforementioned models. According to Table 3
results, it can be deduced that the convergence rate of the proposed model is equal to
that of AFM model; however, the convergence rate of these models are much faster
than MZC model. The accuracy of the proposed model and AFM model is of the order
four, while the accuracy of the MZC model is of order two.

Figure 6. Error in estimation of static deflection of the fully clamped square plate.
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4.3. Example 3: annular thin plate

In the third example, the annular thin plate with b/a = 0.5 is considered as depicted in
Figure 8. The internal edge of the annular thin plate is fully clamped, and the dis-
tributed load is applied at the external edge. Considering the symmetry of the annular
thin plate, only a sectorial of the annular thin plate (b/a = 0.5, φ = 90°) is taken into
consideration for modelling. The non-dimensional static deflection of node B is 0.458
[48] and has coordinates of r = 0.75, φ = 45. The sectorial of the thin plate is
investigated by mapping the square elements into quadrilateral elements as illustrated in
Figure 9.

The MZC model and the proposed model are both transformed into a global coordi-
nate. For two models, the geometry is mapped by bilinear shape function, and the dis-
placement fields are mapped using correspond shape functions. Also, the integrals are
performed based on Gauss–Legendre quadrature rule. Here, the stiffness matrix of annu-
lar thin plate is obtained using 5 Gauss points.

In order to highlight the convergence rate of solutions approximated by different
plate element models, the static deflection obtained using the MZC, and the proposed
models are shown in Figure 10. Figure 10 shows the errors in the evaluated static
deflection of sectorial plate vs. the number of used radial elements on logarithmic
scale. In this numerical example, the number of elements in radial and tangential
directions is kept fixed at their initial value, whereas the number of elements along
each side is increased from 4 to 12. It can be seen from Figure 10, that the pro-
posed model provides more accurate results. The rate of convergence in proposed
models is also faster to that of the MZC model. The computational efforts and time
elapsed to solve a problem are almost the same for both models, while the proposed
model in this study remarkably produces more accurate results.

Figure 7. Error in estimation of static deflection of the fully simply supported square plate.
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5. Conclusion

In this article, an inverse approach is proposed to produce the shape functions associ-
ated with the SCSM of plate element. These shape functions are composed of two
terms: first term includes the classical shape functions of the plate element satisfying
the boundary conditions, and the second term is the hierarchal polynomials sets. The

Figure 8. The annular thin plate with load condition.

Figure 9. Two-dimensional ‘mapping’ of the square element.

Figure10. Error in estimation of static deflection of the annular thin plate.
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unknown coefficients of the polynomial are assigned in such a way that the essential
conditions of shape functions are satisfied and also regenerate the SCSM of plate ele-
ment. These new obtained shape functions are then utilized to map the displacement
field of the plate element to the global coordinates. Numerical examples show that the
new formulation is more accurate than other reported models.
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